
Future Technology Devices International Limited (FTDI)

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2011 Future Technology Devices International Limited

Future Technology Devices

International Ltd.

Application Note

AN_172

Vinculum-II

 Using the USB Slave Driver

Document Reference No.: FT_000424

Version 1.0

Issue Date: 2011-03-15

This application note provides an example of how to use the FTDI Vinculum-II
(VNC2) USB Slave driver. Sample source code is included.

mailto:support1@ftdichip.com�
http://www.ftdichip.com/�

 Copyright © 2011 Future Technology Devices International Limited 1

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

Table of Contents

1 Introduction .. 3

1.1 Driver Hierarchy.. 3

1.1.1 USB Slave Interface ... 3

1.1.2 USB Slave Function Driver Interface .. 4

2 USB Slave Concepts ... 5

2.1 Initialisation ... 5

2.2 Hardware Configuration .. 5

2.3 Driver Handles .. 5

2.4 Endpoints .. 6

2.5 Device Configuration ... 6

2.6 Obtaining an Endpoint Handle ... 6

2.7 Enumeration ... 7

2.8 Reading and Writing Data ... 7

2.9 Return Codes .. 7

3 USB Slave Requests .. 8

3.1 VOS_IOCTL_USBSLAVE_GET_STATE ... 9

3.2 VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE . 10

3.3 VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE 11

3.4 VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE 12

3.5 VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS 13

3.6 VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD 14

3.7 VOS_IOCTL_USBSLAVE_SETUP_TRANSFER 15

3.8 VOS_IOCTL_USBSLAVE_SET_ADDRESS 16

3.9 VOS_IOCTL_USBSLAVE_TRANSFER ... 17

3.10 VOS_IOCTL_USBSLAVE_ENDPOINT_STALL 18

3.11 VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR 19

3.12 VOS_IOCTL_USBSLAVE_ENDPOINT_STATE 20

3.13 VOS_IOCTL_USBSLAVE_SET_LOW_SPEED 21

3.14 VOS_IOCTL_USBSLAVE_DISCONNECT 22

3.15 VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE . 23

3.16 VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE24

 Copyright © 2011 Future Technology Devices International Limited 2

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.17 VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE 25

3.18 VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE . 26

3.19 VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE 27

3.20 VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE . 28

3.21 VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE 29

3.22 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND 30

3.23 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME 31

3.24 VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP 32

4 Contact Information .. 33

5 Appendix A – References ... 35

Document References ... 35

Acronyms and Abbreviations ... 35

6 Appendix B – Revision History 36

 Copyright © 2011 Future Technology Devices International Limited 3

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

1 Introduction

The FTDI USB Slave driver is a peripheral driver that controls the USB slave ports on Vinculum II (VNC2).
As a peripheral driver, the USB Slave driver exposes the standard device driver interface accessed via the
Device Manager to an application [1]. It is the purpose of this application note to describe the USB Slave
driver interface.

While it is entirely feasible for an application to call the USB Slave interface directly, it is more likely that
applications will be designed to encapsulate USB Slave functionality in a function driver that is layered
above, and attached to, the USB Slave driver. This application note contains information of use to
developers implementing USB Slave function drivers.

The sample source code contained in this application note is provided as an example and is neither
guaranteed nor supported by FTDI.

1.1 Driver Hierarchy

In the application architecture, the USB Slave driver can have a direct interface to the application, or a
function driver can be layered between application and USB Slave driver.

1.1.1 USB Slave Interface

The relationship between an application and the USB Slave driver is shown in Figure 1:

Figure 1: USB Slave Interface

 Copyright © 2011 Future Technology Devices International Limited 4

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

1.1.2 USB Slave Function Driver Interface

The relationship between an application, a USB Slave function driver and the USB Slave driver is shown
in Figure 2:

Figure 2: USB Slave Function Driver Interface

 Copyright © 2011 Future Technology Devices International Limited 5

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

2 USB Slave Concepts

VNC2 can be configured with at most 2 USB Slave ports. The USB Slave driver maintains a context for
each configured USB Slave port and presents an endpoint-based interface to the application. Requests to
an endpoint must be routed through the correct driver handle to the appropriate USB Slave port.

2.1 Initialisation

The usbslave_init() function must be called to initialise the driver before the kernel scheduler is started
with vos_start_scheduler().

Syntax
unsigned char usbslave_init (unsigned char slavePort, unsigned char devNum);

Description

Initialise the USB Slave driver and register the driver with the Device Manager. There are
two USB Slave ports, both are controlled from a single instance of the driver. However, the
usbslave_init() function must be called for each slave port used.

Parameters

slavePort

The slave port to initialise to use the device number passed in devNum. This can be either
USBSLAVE_PORT_A or USBSLAVE_PORT_B.

devNum

The device number to use when registering this USB Slave port with the Device Manager is
passed in the devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or
allocate memory for the driver.

Comments

The function must be called twice to configure both USB Slave ports. If a port is configured
by the USB Host then it cannot be used for the USB Slave. The USB Slave has no thread
memory requirements.

2.2 Hardware Configuration

The driver can be configured to control either USB Port 1, USB Port 2 or both USB Ports. A unique
VOS_HANDLE and usbslave_ep_handle_t handle is required for each endpoint. If a port is configured for
use by the USB Host then it cannot be used by the USB Slave.

Once the USB Slave driver is configured it cannot be reconfigured.

2.3 Driver Handles

The USB Slave driver requires a unique device number to register a USB port as a USB Slave device with
the Device Manager. Two unique device numbers are required to register both USB ports as USB Slave
devices with the Device Manager.

 Copyright © 2011 Future Technology Devices International Limited 6

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

If both USB Ports are configured then the application will have 2 driver handles when both ports are
opened, one for each USB Port and effectively 2 device drivers active. They should be treated separately
by the application.

2.4 Endpoints

The interface to a USB port is based on operations on endpoints [2]. Each device has a control endpoint
and a variable number of IN and OUT endpoints.

Endpoints are accessed via a handle of type usbslave_ep_handle_t. The control endpoint (EP0) is treated
as a special case. It handles SETUP packets and supports IN and OUT transactions, and separate handles
are required for EP0 IN and EP0 OUT

2.5 Device Configuration

A device consists of a control endpoint and up to 7 IN or OUT endpoints. The following IOCTLs are used
to set the endpoint configuration for a device:

VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

The control endpoint is always enabled.

2.6 Obtaining an Endpoint Handle

A handle must be obtained prior to accessing an endpoint. The following IOCTLs are used to obtain a
handle to an endpoint of a specific type:

Control
Endpoint

VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE

IN Endpoint VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

OUT Endpoint VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

Once a handle is obtained then data can be sent to the endpoint (for an OUT endpoint) and received from
the endpoint (for IN endpoints).

 Copyright © 2011 Future Technology Devices International Limited 7

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

2.7 Enumeration

To support device enumeration, the following algorithm is required. All IOCTLs must be directed to the
Control endpoint.

• Wait for a SETUP packet to be received (VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD)

• Decode SETUP packet

• Handle Standard Device Requests - mandatory requests that must be handled are:

o Set Address, use VOS_IOCTL_USBSLAVE_SET_ADDRESS to change slave address

o Set Configuration

o Get Descriptor for both Device and Configuration descriptors

• Handle Class Specific Requests (if any)

• Handle Vendor Specific Requests (if any)

• If SETUP packet has a data phase read or write further data with
VOS_IOCTL_USBSLAVE_SETUP_TRANSFER

• Use VOS_IOCTL_USBSLAVE_SETUP_TRANSFER again to acknowledge transaction with ACK phase

2.8 Reading and Writing Data

The VOS_IOCTL_USBSLAVE_TRANSFER IOCTL is used for both IN and OUT endpoints. It must not be
used on a Control endpoint.

2.9 Return Codes

All calls to the USB Slave driver will return one of the following status codes.

USBSLAVE_OK

No error.

USBSLAVE_INVALID_PARAMETER

A parameter is incorrect or has a mistake.

USBSLAVE_ERROR

An unspecified error occurred.

 Copyright © 2011 Future Technology Devices International Limited 8

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3 USB Slave Requests

 As defined in USBSlave.h, calls to the IOCTL functions for the USB Slave driver take the form:

typedef struct _usbslave_ioctl_cb_t {
 uint8 ioctl_code;
 uint8 ep;
 usbslave_ep_handle_t handle;
 // read buffer
 void *get;
 // write butter
 void *set;
 union {
 struct {
 uint8 in_mask;
 int16 out_mask;
 } set_ep_masks;
 struct {
 uint8 *buffer;
 int16 size;
 int16 bytes_transferred;
 } setup_or_bulk_transfer;
 } request;
} usbslave_ioctl_cb_t;

As defined in USBSlave.h, the following IOCTL request codes are supported by the USB Host driver:

VOS_IOCTL_USBSLAVE_GET_STATE

VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS

VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD

VOS_IOCTL_USBSLAVE_SETUP_TRANSFER

VOS_IOCTL_USBSLAVE_SET_ADDRESS

VOS_IOCTL_USBSLAVE_TRANSFER

VOS_IOCTL_USBSLAVE_ENDPOINT_STALL

VOS_IOCTL_USBSLAVE_ ENDPOINT_CLEAR

VOS_IOCTL_USBSLAVE_ ENDPOINT_STATE

VOS_IOCTL_USBSLAVE_SET_LOW_SPEED

VOS_IOCTL_USBSLAVE_DISCONNECT

VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ BULK_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ INT_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ ISO_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ ISO_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE

VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND

VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME

VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP

 Copyright © 2011 Future Technology Devices International Limited 9

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.1 VOS_IOCTL_USBSLAVE_GET_STATE

Description

Returns the current state of the USB Slave hardware interface.

Parameters

There are no parameters.

Returns

The current state is returned to the location whose address is passed in the get field of the
usbslave_ioctl_cb_t structure. It can be one of the following values:

usbsStateNotAttached Not attached to a host controller.

usbsStateAttached Attached to a host controller which is not configured.

usbsStatePowered Attached to a host controller which is configured. Configuration
of device can commence.

usbsStateDefault Default mode where configuration sequence has performed a
device reset operation.

usbsStateAddress Address has been assigned by host.

usbsStateConfigured Device is fully configured by host.

usbsStateSuspended Device has been suspended by host.

Example

usbslave_ioctl_cb_t iocb;
unsigned char state;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_STATE;
iocb.get = &state;
vos_dev_ioctl(hA,&iocb);

if (state == usbsStateConfigured)
{
 // device in action
}

 Copyright © 2011 Future Technology Devices International Limited 10

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.2 VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE

Description

Returns a handle for the control endpoint EP0. Separate handles are required for EP0 IN and
EP0 OUT.

Parameters

The control endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t structure.
Control endpoint identifiers are defined as follows:

enum {
 USBSLAVE_CONTROL_SETUP,
 USBSLAVE_CONTROL_OUT,
 USBSLAVE_CONTROL_IN
};

Returns

The control endpoint handle is returned to the location whose address is passed in the get
field of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t in_ep0;
usbslave_ep_handle_t out_ep0;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE;
iocb.ep = USBSLAVE_CONTROL_IN;
iocb.get = &in_ep0;
vos_dev_ioctl(hA,&iocb);

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE;
iocb.ep = USBSLAVE_CONTROL_OUT;
iocb.get = &out_ep0;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 11

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.3 VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE

Description

Returns a handle for an IN endpoint.

NOTE: this IOCTL is deprecated. Please use one of the following IOCTLs instead:

 VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The IN endpoint handle is returned to the location whose address is passed in the get field of
the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE;
iocb.ep = 1;
iocb.get = &in_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 12

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.4 VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE

Description

Returns a handle for an OUT endpoint.

NOTE: this IOCTL is deprecated. Please use one of the following IOCTLs instead:

 VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The OUT endpoint handle is returned to the location whose address is passed in the get field
of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE;
iocb.ep = 2;
iocb.get = &out_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 13

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.5 VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS

Description

Sets the endpoint masks for the device. Endpoint masks represent endpoint addresses and
types for the device.

NOTE: this IOCTL is deprecated. Please use one of the following IOCTLs instead:

 VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

 VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

Parameters

The endpoint mask for IN endpoints is passed in the set_ep_masks.in_mask field of the
request union in the usbslave_ioctl_cb_t structure.

The endpoint mask for OUT endpoints is passed in the set_ep_masks.out_mask field of the
request union in the usbslave_ioctl_cb_t structure.

Valid endpoint addresses are in the range 1-7. In the mask fields, bits set to 1 correspond to
the addresses of the device’s endpoints.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS;
iocb.request.set_ep_masks.in_mask = 0x02; // EP1
iocb.request.set_ep_masks.out_mask = 0x04; // EP2
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 14

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.6 VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD

Description

Receives a SETUP packet. This call blocks until a SETUP packet is received from the host.

Parameters

The address of the buffer to receive the SETUP packet is passed in the
setup_or_bulk_transfer.buffer field of the request union in the usbslave_ioctl_cb_t structure.

The size the buffer to receive the SETUP packet is passed in the setup_or_bulk_transfer.size
field of the request union in the usbslave_ioctl_cb_t structure. The USB Slave returns a 9-
byte SETUP packet.

Returns

The buffer passed in the setup_or_bulk_transfer.buffer field of the request union in the
usbslave_ioctl_cb_t structure contains the SETUP packet.

Example

usbslave_ioctl_cb_t iocb;
unsigned char setup_buffer[9];

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD;
iocb.request.setup_or_bulk_transfer.buffer = setup_buffer;
iocb.request.setup_or_bulk_transfer.size = 9;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 15

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.7 VOS_IOCTL_USBSLAVE_SETUP_TRANSFER

Description

Performs a data phase or ACK phase for a SETUP transaction.

Parameters

The handle of the control endpoint on which the transaction is being performed is passed in
the handle field of the usbslave_ioctl_cb_t structure.

The address of the buffer containing data for the transfer is passed in the
setup_or_bulk_transfer.buffer field of the request union in the usbslave_ioctl_cb_t structure.

The size of the buffer containing data for the transfer is passed in the
setup_or_bulk_transfer.size field of the request union in the usbslave_ioctl_cb_t structure.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SETUP_TRANSFER;
iocb.handle = in_ep0;
iocb.request.setup_or_bulk_transfer.buffer = (void *) 0;
iocb.request.setup_or_bulk_transfer.size = 0;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 16

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.8 VOS_IOCTL_USBSLAVE_SET_ADDRESS

Description

Sets the USB address for the device. The USB host assigns the device address during
enumeration, and this IOCTL is used to set the USB slave port hardware to respond to that
address. This IOCTL should be used when processing the USB standard device request,
SET_ADDRESS.

Parameters

The address is passed in the set field of the usbslave_ioctl_cb_t structure.

Returns

There is no return value.

Example

void set_address_request(uint8 addr)
{
 usbslave_ioctl_cb_t iocb;

 iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ADDRESS;
 iocb.set = (void *) addr;
 vos_dev_ioctl(hA,&iocb);
}

 Copyright © 2011 Future Technology Devices International Limited 17

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.9 VOS_IOCTL_USBSLAVE_TRANSFER

Description

Performs a transfer to a non-control endpoint. This IOCTL is used for bulk transfers on both
IN and OUT endpoints. When used on an OUT endpoint, this IOCTL blocks until data is
received from the host. When used on an IN endpoint, this IOCTL blocks until data is sent to
the host (in response to an IN request sent from the host).

Parameters

The handle of the endpoint on which the transaction is being performed is passed in the
handle field of the usbslave_ioctl_cb_t structure.

The address of the buffer for the transfer is passed in the setup_or_bulk_transfer.buffer field
of the request union in the usbslave_ioctl_cb_t structure.

The size of the buffer containing data for the transfer is passed in the
setup_or_bulk_transfer.size field of the request union in the usbslave_ioctl_cb_t structure.

Returns

The number of bytes transferred is returned in the setup_or_bulk_transfer.bytes_transferred
field of the request union in the usbslave_ioctl_cb_t structure.

For bulk transfer requests on OUT endpoints, the data is returned in the buffer whose
address was passed in the setup_or_bulk_transfer.buffer field of the request union in the
usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t in_ep;
usbslave_ep_handle_t out_ep;
char *str = "hello, world";
uint8 out_buffer[64];

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_BULK_TRANSFER;
iocb.handle = in_ep;
iocb.request.setup_or_bulk_transfer.buffer = (unsigned char *) str;
iocb.request.setup_or_bulk_transfer.size = 12;
vos_dev_ioctl(hA,&iocb);

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_BULK_TRANSFER;
iocb.handle = out_ep;
iocb.request.setup_or_bulk_transfer.buffer = out_buffer;
iocb.request.setup_or_bulk_transfer.size = 64;
iocb.request.setup_or_bulk_transfer.bytes_transferred = 0;
vos_dev_ioctl(hA,&iocb);

while (iocb.request.setup_or_bulk_transfer.bytes_transferred) {
 // process bytes received from host
}

 Copyright © 2011 Future Technology Devices International Limited 18

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.10 VOS_IOCTL_USBSLAVE_ENDPOINT_STALL

Description

Force an endpoint to stall on the USB Slave device. An IN, OUT or control endpoint may be
stalled. This may be used on the control endpoint when a device does not support a certain
SETUP request or on other endpoints as required. If an endpoint it halted then it will return
a STALL to a request from the host.

Parameters

The endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t structure.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ENDPOINT_STALL;
iocb.ep = 1;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 19

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.11 VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR

Description

Remove a halt state on the USB Slave device. An IN, OUT or control endpoint may be stalled
but only IN and OUT endpoints can be cleared by this IOCTL.

Parameters

The endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t structure.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR;
iocb.ep = 1;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 20

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.12 VOS_IOCTL_USBSLAVE_ENDPOINT_STATE

Description

Returns the halt state of an endpoint on the USB Slave device. If an endpoint it halted then it
will return a STALL to a request from the host.

Parameters

The endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t structure.

Returns

The return value is zero if the endpoint it not halted and non-zero if it is halted.

Example

usbslave_ioctl_cb_t iocb;
char x;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ENDPOINT_STATE;
iocb.ep = 1;
iocb.get = &x;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 21

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.13 VOS_IOCTL_USBSLAVE_SET_LOW_SPEED

Description

Sets the USB Slave device to Low Speed. This is non-reversible. This should be performed
as soon as possible after opening the USB Slave device and before host enumeration occurs.

Parameters

There are no parameters.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_LOW_SPEED;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 22

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.14 VOS_IOCTL_USBSLAVE_DISCONNECT

Description

Sets the USB slave into an un-addressed state and resets the hardware needed to allow the
device to be reconnected to a USB host at a later time. This IOCTL can also be used to force
a disconnect from a USB host. In order to detect a disconnect for a USB host, a GPIO line
must be used. The GPIO may be polled or use an interrupt. When a disconnect from the
host is detected, this IOCTL should be called from the application.

Parameters

The set field of the IOCTL control block should be set to 0.

Returns

There is no return value.

Example

void handle_disconnect()
{
 // call this function when a disconnect from the USB host has been detected
 usbslave_ioctl_cb_t iocb;

 iocb.ioctl_code = VOS_IOCTL_USBSLAVE_DISCONNECT;
 iocb.set = (void *) 0;
 vos_dev_ioctl(hA,&iocb);
}

 Copyright © 2011 Future Technology Devices International Limited 23

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.15 VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

Description

Returns a handle for a bulk IN endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The bulk IN endpoint handle is returned to the location whose address is passed in the get
field of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE;
iocb.ep = 1;
iocb.get = &in_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 24

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.16 VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

Description

Returns a handle for a bulk OUT endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The bulk OUT endpoint handle is returned to the location whose address is passed in the get
field of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE;
iocb.ep = 2;
iocb.get = &out_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 25

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.17 VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

Description

Returns a handle for an interrupt IN endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The interrupt IN endpoint handle is returned to the location whose address is passed in the
get field of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE;
iocb.ep = 1;
iocb.get = &in_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 26

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.18 VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

Description

Returns a handle for an interrupt OUT endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The interrupt OUT endpoint handle is returned to the location whose address is passed in the
get field of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE;
iocb.ep = 2;
iocb.get = &out_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 27

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.19 VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

Description

Returns a handle for an isochronous IN endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The isochronous IN endpoint handle is returned to the location whose address is passed in
the get field of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE;
iocb.ep = 1;
iocb.get = &in_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 28

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.20 VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

Description

Returns a handle for an isochronous OUT endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t structure. Valid
endpoint addresses are in the range 1-7.

Returns

The isochronous OUT endpoint handle is returned to the location whose address is passed in
the get field of the usbslave_ioctl_cb_t structure.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE;
iocb.ep = 2;
iocb.get = &out_ep;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 29

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.21 VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE

Description

Set the max packet size for the specified endpoint. The endpoint max packet size can be set
to 8, 16, 32 or 64 bytes for a bulk IN, bulk OUT, interrupt IN or interrupt OUT endpoint.
Isochronous endpoints do not use the max packet size field.

Parameters

The handle of the endpoint is passed in the handle field of the usbslave_ioctl_cb_t structure.

The desired maximum packet size is passed in the ep_max_packet_size field of the set union
in the usbslave_ioctl_cb_t structure.

Returns

If an invalid endpoint maximum packet size is requested the function will return
USBSLAVE_INVALID_PARAMETER. Otherwise, USBSLAVE_OK will be returned.

Example

usbslave_ioctl_cb_t iocb;
usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE;
iocb.handle = in_ep;
iocb.request.ep_max_packet_size = USBSLAVE_MAX_PACKET_SIZE_64;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 30

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.22 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND

Description

This call blocks until a SUSPEND signal is received from the host.

Parameters

There are no parameters.

Returns

USBSLAVE_OK will always be returned.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 31

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.23 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME

Description

This call blocks until a RESUME signal is received from the host.

Parameters

There are no parameters.

Returns

USBSLAVE_OK will always be returned.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 32

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

3.24 VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP

Description

Issues a remote wakeup request to the host. This IOCTL should not be used unless the USB
configuration descriptor indicates that the device is remote wakeup enabled.

Parameters

There are no parameters.

Returns

USBSLAVE_OK will always be returned.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP;
vos_dev_ioctl(hA,&iocb);

 Copyright © 2011 Future Technology Devices International Limited 33

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

4 Contact Information
Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
Shanghai, 200051
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com
Web Site URL

http://www.ftdichip.com

mailto:sales1@ftdichip.com�
mailto:support1@ftdichip.com�
mailto:admin1@ftdichip.com�
http://www.ftdichip.com/�
http://www.ftdichip.com/�
mailto:tw.sales1@ftdichip.com�
mailto:tw.support1@ftdichip.com�
mailto:tw.admin1@ftdichip.com�
http://www.ftdichip.com/�
mailto:us.sales@ftdichip.com�
mailto:us.support@ftdichip.com�
mailto:us.admin@ftdichip.com�
http://www.ftdichip.com/�
mailto:cn.sales@ftdichip.com�
mailto:cn.support@ftdichip.com�
mailto:cn.admin@ftdichip.com�
http://www.ftdichip.com/�

 Copyright © 2011 Future Technology Devices International Limited 34

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future
Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety,
regulatory and system-level performance requirements. All application-related information in this document (including
application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has
taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability
for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or
safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from
any and all damages, claims, suits or expense resulting from such use. This document is subject to change without
notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document.
Neither the whole nor any part of the information contained in, or the product described in this document, may be
adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder.
Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH,
United Kingdom. Scotland Registered Company Number: SC136640

http://ftdichip.com/�

 Copyright © 2011 Future Technology Devices International Limited 35

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

5 Appendix A – References

Document References

[1] FTDI Application Note AN_151, Vinculum II User Guide, FTDI, 2010. Available from
http://www.ftdichip.com/Support/Documents/AppNotes.htm

[2] Universal Serial Bus Specification Revision 2.0, USB Implementers Forum, 2000. Available from
http://www.usb.org/developers/docs/

Acronyms and Abbreviations

Terms Description

VNC2 Vinculum II

VOS Vinculum Operating System

http://www.ftdichip.com/Support/Documents/AppNotes.htm�
http://www.usb.org/developers/docs/�

 Copyright © 2011 Future Technology Devices International Limited 36

Document Reference No.: FT_000424
Vinculum II Using the USB Slave Driver AN_172

Application Note Version 1.0
Clearance No.: FTDI# 206

6 Appendix B – Revision History

Revision Changes Date

1.0 Initial Release 2011-03-15

	1 Introduction
	1.1 Driver Hierarchy
	1.1.1 USB Slave Interface
	1.1.2 USB Slave Function Driver Interface

	2 USB Slave Concepts
	2.1 Initialisation
	2.2 Hardware Configuration
	2.3 Driver Handles
	2.4 Endpoints
	2.5 Device Configuration
	2.6 Obtaining an Endpoint Handle
	2.7 Enumeration
	2.8 Reading and Writing Data
	2.9 Return Codes

	3 USB Slave Requests
	3.1 VOS_IOCTL_USBSLAVE_GET_STATE
	3.2 VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE
	3.3 VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE
	3.4 VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE
	3.5 VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS
	3.6 VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD
	3.7 VOS_IOCTL_USBSLAVE_SETUP_TRANSFER
	3.8 VOS_IOCTL_USBSLAVE_SET_ADDRESS
	3.9 VOS_IOCTL_USBSLAVE_TRANSFER
	3.10 VOS_IOCTL_USBSLAVE_ENDPOINT_STALL
	3.11 VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR
	3.12 VOS_IOCTL_USBSLAVE_ENDPOINT_STATE
	3.13 VOS_IOCTL_USBSLAVE_SET_LOW_SPEED
	3.14 VOS_IOCTL_USBSLAVE_DISCONNECT
	3.15 VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE
	3.16 VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE
	3.17 VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE
	3.18 VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE
	3.19 VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE
	3.20 VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE
	3.21 VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE
	3.22 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND
	3.23 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME
	3.24 VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP

	4 Contact Information
	5 Appendix A – References
	Document References
	Acronyms and Abbreviations

	6 Appendix B – Revision History

