
Future Technology Devices International Limited (FTDI)

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2010 Future Technology Devices International Limited

Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user
agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense
resulting from such use.

Future Technology Devices International Ltd.

Application Note AN_155

Vinculum-II SD Card Example

Document Reference No.: FT_000350

Version 1.2

Issue Date: 2010-12-14

This application note provides an example of using the FTDI Vinculum-II (VNC2) to
communicate with an SD Card. Drivers and source code is also provided

(downloaded from FTDI website)

 Copyright © 2010 Future Technology Devices International Limited 1

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

Table of Contents

1 Introduction .. 2

1.1 Overview ... 2

1.2 Supported SD Cards .. 2

2 SD Card Application Layout ... 3

3 Hardware Setup .. 4

3.1 Connecting SD Card Socket ... 4

4 Application Source Code .. 6

4.1 IOMux Setup ... 6

4.2 SD Card Setup ... 6

4.2.1 Adding Driver Libraries ... 7

4.2.2 Initializing Drivers ... 7

4.2.3 Opening Drivers .. 7

4.2.4 Attaching Drivers ... 8

4.2.5 Initializing SD Card .. 9

4.3 Opening File and Writing Data .. 10

5 Contact Information .. 11

6 Appendix A – References ... 12

Document References ... 13

Acronyms and Abbreviations ... 13

7 Appendix B – Code Listing ... 14

8 Appendix C – Revision History 17

 Copyright © 2010 Future Technology Devices International Limited 2

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

1 Introduction

The wide ranging popularity of Secure Digital (SD) Cards in consumer electronics coupled with their low

cost, high capacity and small size make them an ideal option for a number of embedded applications.
This application note demonstrates how to connect an SD Card to a VNC2 V2-Eval Board and then
illustrates how to use FTDI‟s supplied drivers to communicate with the SD Card using a FAT File System
interface.

The source files and libraries needed for this application can be downloaded from the FTDI website at the
following location:
http://www.ftdichip.com/Support/SoftwareExamples/VinculumIIProjects/SD_Card_Beta.zip

1.1 Overview

The SD Card specification provides a subset of the SD protocol allowing communication with the devices
using a Serial Peripheral Interface Bus. SPI mode is a simplistic version of the SD spec allowing for easy
access to the devices via microcontrollers. The main disadvantage of SPI mode is the loss in

performance when compared to a full SD Card host.

SD Cards are shipped pre-formatted with a FAT File System; this allows FAT driver access to the file
structure held on the devices. SD Cards therefore provide a cost effective way of storing data, e.g. data
logging, on a removable storage device when combined with VNC2‟s host/slave capability.

1.2 Supported SD Cards

The FAT driver and SD Card driver supplied with this application example have been tested with the

following SD Cards:

SD HC

Kingston SD HC 4GB Class 4

Transcend SD HC 8GB Class 6

Patriot Memory SD HC 16GB Class 6

SD v1.0

Canon SD 32MB

http://www.ftdichip.com/Support/SoftwareExamples/VinculumIIProjects/SD_Card_Beta.zip

 Copyright © 2010 Future Technology Devices International Limited 3

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

2 SD Card Application Layout

Figure 2.1 below illustrates the layout of a typical SD Card application. The general flow of data from the

user application travels through each of the device driver layers to the SD Card and back again. FTDI
provide each of the driver layers within the system, the application layer is the only code that must be
written by the user.

The application requires the following device drivers:

The FAT API and FAT File System (FFS) driver; interfaces with the SD Card file structure allowing for
open/read/write/close etc. operations on the SD Card contents.

The SD Card driver, structures data from the FAT layer into a format that conforms to the SD Card SPI

specification and passes the data onto the SPI Master.

The SPI Master driver is the physical medium that transfers data from the card to the VNC2 and vice
versa.

As an added feature the GPIO driver can be used to check the state of the Card Detect and Write Protect
lines from the SD Card; this will be discussed in section 4.

Figure 2.1 – Application Layout

 Copyright © 2010 Future Technology Devices International Limited 4

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

3 Hardware Setup

This SD Card example requires the following pieces of hardware: a host PC to connect to the VNC2; VNC2

customer evaluation board V2-Eval; a VNC2 64-pin QFN daughtercard; an SD Card socket; a FAT
formatted SD Card (Transcend SD HC 8GB used in this example); a USB A-B cable to connect the V2-Eval
Board to the host PC; and a soldering iron with appropriate wire to solder the SD socket to the prototype
area. The USB cable is only used in this sample to program the firmware into the VNC2; after this point
the VNC2 runs as a standalone system without the need for the host PC.

Figure 3.1 – Hardware Setup

3.1 Connecting SD Card Socket

Figure 3.1 illustrates the SD Card socket soldered to the prototyping area of the V2-Eval Board. The

following figure, 3.2, represents the solder connections that have been made from the prototyping area
to the SD Card socket. The IOBUS pins used when connecting an SD socket are open to the designer,

the pins used in this example simply represent a working setup. Please remember that the IOMux on the
VNC2 must be configured to match the IOBUS pins selected, this will be discussed further in section 4.1.

Host PC Cable

Transcend SD HC 8GB

SD Card Socket

 Copyright © 2010 Future Technology Devices International Limited 5

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

Figure 3.2 - SD Socket Connections

Figure 3.3 - SD Socket Schematic

 Copyright © 2010 Future Technology Devices International Limited 6

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

4 Application Source Code

The following section demonstrates how to write an application to write a file to an SD Card using the

card‟s FAT File System. This section anticipates that the user has a sound understanding of application
structure and the fundamental concepts of how the Vinculum Operating System (VOS) works. For an
introduction to VinIDE, VOS and an overview of the general application structure please refer to the
Vinculum-II tool-chain Getting Started Guide. The Vinculum-II tool-chain consists of a compiler,
assembler, linker and debugger encapsulated in a graphical interface (the IDE) and is used to develop
customised firmware for VNC2.

The following example demonstrates how to build a sample application from a blank project using the

IDE. The sample demonstrates writing the string “Hello World” to a new file on an SD Card. A complete
listing of the sample code is available at Appendix B at the end of this applications note. This sample
source code has been tested but is provided for illustration only and is not supported by FTDI.

4.1 IOMux Setup

The VNC2 must be configured using the IOMux such that the signals coming from the device match the

soldered pins on the SD socket. The following IOMux configuration source code is for the socket
connection as defined within section 3.1 connected to a 64 pin VNC2 daughter card. FTDI provide an
IOMux configuration utility, as part of the IDE, to aid with configuring IOMux signals; for more
information search for „IOMux Configuration Utility’ within the IDE help file.

Pins 19, 20, 22 and 23 of VNC2 are the SPI Master connections and are controlled
by the SPI Master driver. Pin 16, Card Detect, will allow the user to determine if an
SD Card is connected to the SD socket before attempting to communicate with a

device. Pin 15, the Write Protect line, indicates whether the physical write protect
lock on the SD Card is set (figure 4.1); the SD Card will not allow data to be written
to the device if the write protect lock is set. Both pin 15 and 16 are controlled by a
GPIO port, it is not mandatory however to have these lines connected. This will be
discussed in greater detail within section 4.2.

unsigned char IOMux_Setup()

{

 unsigned char packageType = vos_get_package_type();

 if (packageType == VINCULUM_II_64_PIN)

 {

 // SPIMaster to V2EVAL board pins

// IOBus 8 (Pin 19) Master Clock Output

vos_iomux_define_output(19 ,IOMUX_OUT_SPI_MASTER_CLK);

// IOBus 9 (Pin 20) Master Out Slave In

vos_iomux_define_output(20,IOMUX_OUT_SPI_MASTER_MOSI);

// IOBus 10 (Pin 22) Master In Slave Out

vos_iomux_define_input(22,IOMUX_IN_SPI_MASTER_MISO);

// IOBus 11 (Pin 23) Chip Select Output

vos_iomux_define_output(23,IOMUX_OUT_SPI_MASTER_CS_0);

// IOBus 5 (Pin 16) Card Detect Input

vos_iomux_define_input(16,IOMUX_IN_GPIO_PORT_B_1);

// IOBus 4 (Pin 15) Write Protect Input

vos_iomux_define_input(15,IOMUX_IN_GPIO_PORT_B_0);

 }

 return SD_SUCCESS;

}

4.2 SD Card Setup

The SD Card sample requires the following FTDI provided drivers: FAT; GPIO; SPI Master; SD Card; the
VOS kernel and the stdio library.

Figure 4.1 – Write Protect

http://www.ftdichip.com/Support/Documents/AppNotes/AN_142_Vinculum-II_Tool_Chain_Getting_Started_Guide.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_139_Vinculum-II%20IO_Mux%20Explained.pdf

 Copyright © 2010 Future Technology Devices International Limited 7

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

4.2.1 Adding Driver Libraries

Each of the device drivers to be used in the application must be added to the current project within the
IDE. Device drivers come in the form of library files that are all bundled with the IDE installer. Library
files are easily added to the current project using the Project Libraries window within the IDE. For help
with adding library files to VNC2 projects please refer to the Getting Started Guide.

4.2.2 Initializing Drivers

Prior to starting the VNC2 RTOS scheduler (VOS) within the main routine, all drivers to be used within the
system must be initialized; that is, have the init routine called for each driver. The listing below
demonstrates initializing each of the device drivers required for the sample.

Note the init routine for the SPI Master uses a context with a 512 byte buffer size, this is important as
the SD Card driver will not work with a buffer less than this.

After each of the drivers has been initialized the scheduler is called to start all application threads, in this
case there is only one thread, tcbFirmware.

Void main(void)

{

 // SPI Master context

 7pymaster_context_t spimasterCtx;

 // GPIO context

 gpio_context_t gpioCtx;

 // Call VOS initialisation routines

 vos_init(50, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

 vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

 //***

 // INITIALISE DRIVERS

 //***

 spimasterCtx.buffer_size = VOS_BUFFER_SIZE_512_BYTES;

 7pymaster_init(VOS_DEV_SPIMASTER, &spimasterCtx);

 sd_init(VOS_DEV_SDCARD);

 fatdrv_init(VOS_DEV_FTFS);

 gpioCtx.port_identifier = GPIO_PORT_B;

 gpio_init(VOS_DEV_GPIO, &gpioCtx);

 // Create threads for firmware application (no parameters)

 tcbFirmware = vos_create_thread(50, 8192, firmware, 0);

 // Device IOMux Settings

 IOMux_Setup();

 // Start VOS scheduler

 vos_start_scheduler();

main_loop:

 goto main_loop;

}

4.2.3 Opening Drivers

The firmware thread tcbFirmware, created at the end of the main routine, contains the code for opening
each of the device handles. The VOS_HANDLE obtained from a vos_dev_open is used throughout the

application to reference each respective driver layer. This is the method that allows data to pass
between the device driver layers to the SD Card as discussed in section 2 and shown in figure 2.1.

At this point the GPIO driver is also configured such that our Card Detect and Write Protect pins are set
as input; this will have the affect of allowing the SD Card driver to check the state of each line.

http://www.ftdichip.com/Support/Documents/AppNotes/AN_142_Vinculum-II_Tool_Chain_Getting_Started_Guide.pdf

 Copyright © 2010 Future Technology Devices International Limited 8

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

Void firmware(void)

{

 VOS_HANDLE hSPIMaster, hSDCard, hFat, hGPIO;

 msi_ioctl_cb_t msi_cb;

 gpio_ioctl_cb_t gpio_iocb;

 sdcard_ioctl_cb_attach_t sd_cb;

 fatdrv_ioctl_cb_attach_t fat_cb;

 fat_ioctl_cb_t fat_iocb;

 unsigned char *s = “Hello World!”;

 unsigned char t[12];

 FILE *file;

 // Open a handle to each of our devices.

 hSPIMaster = vos_dev_open(VOS_DEV_SPIMASTER);

 hFat = vos_dev_open(VOS_DEV_FTFS);

 hSDCard = vos_dev_open(VOS_DEV_SDCARD);

 hGPIO = vos_dev_open(VOS_DEV_GPIO);

 // Configure the GPIO port to input.

 Gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

 gpio_iocb.value = 0x00;

 vos_dev_ioctl(hGPIO, &gpio_iocb);

4.2.4 Attaching Drivers

The next stage is to join the device driver layers of the system allowing
data to pass freely between each layer. Joining the layers is achieved
through the passing of device handles to an attach ioctl for each
driver. Starting at the bottom of the system device layers, the SD

Card driver is connected to the underlying SPI Master, figure 4.2.

 // Attach SPI Master and the GPIO to the SD Card driver.
 Sd_cb.SPI_Handle = hSPIMaster;

 sd_cb.GPIO_Handle = hGPIO;

 sd_cb.WP_Bit = GPIO_PIN_0;

 sd_cb.CD_Bit = GPIO_PIN_1;

 msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_ATTACH;

 msi_cb.set = &sd_cb;

 vos_dev_ioctl(hSDCard, &msi_cb);

The SD Card driver uses the sdcard_ioctl_cb_attach_t structure to

configure the driver on an attach. The SPI_Handle member is a
handle to the SPI Master driver which is a required field. The member
GPIO_Handle is a handle to the GPIO port used to check the status of
the Write Protect and Card Detect lines from the SD Card. As GPIO
ports are 8 bits wide the WP_Bit and CD_Bit are the respective pins

within the GPIO driver that the SD Card driver should monitor for

changes to Write Protect and Card Detect. In relation to the above
sample: if the Card Detect line (active low), GPIO pin 1, goes high the
SD Card driver can report that there is no card within the socket. The
SD Card driver does not require that the user provides a handle to a
GPIO port, if this is the case however the handle must be set to NULL.

Like BOMS class devices the SD Card driver interfaces to underlying
hardware using the Mass Storage Interface (MSI) API. The
sdcard_ioctl_cb_attach_t data is packaged into the

msi_ioctl_cb_t structure and sent to the SD Card driver using the

ioctl call.

Working up through the device layers to the FAT File System driver; the handle to the SD Card driver is
passed to the attach ioctl to join the two layers, figure 4.3.

Figure 4.2 – SD Card driver

attached to SPI Master and GPIO

Figure 4.3 – SD Card driver

attached to the FFS

 Copyright © 2010 Future Technology Devices International Limited 9

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

 // Attach the SD Card to the Fat File System driver.
 Fat_iocb.ioctl_code = FAT_IOCTL_FS_ATTACH;

 fat_iocb.set = &fat_cb;
 fat_cb.msi _handle = hSDCard;

 fat_cb.partition = 0;

 vos_dev_ioctl(hFat, &fat_iocb);

Finally the FaAT File System is attached to the FAT API (figure 4.4)

joining each of the driver layers to the user application.

 // Attach the Fat File System to the Fat API

 fsAttach(hFat);

4.2.5 Initializing SD Card

For an SD Card to communicate via the SPI protocol it must be

initialized in SPI mode at power-up. The SD Card driver provides an

ioctl call that will initialize the card in SPI mode and determine the version of SD Card connected. This

ioctl call must be made before attempting to read or write data to the card.

The following code initializes the card in SPI mode and uses another ioctl to return the card type. An

extra check has also been added to make sure that there is an SD Card present before trying to

communicate with it.

 // Check we have an SD Card connected to the socket.

 Msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_DETECT;

 vos_dev_ioctl(hSDCard, &msi_cb);

 if(*msi_cb.get != SD_CARD_PRESENT) {

 return;

 }

 // Initialize the card in SPI mode.

 Msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_INIT;

 vos_dev_ioctl(hSDCard, &msi_cb);

 // Get the card type.

 Msi_cb.ioctl_code = MSI_IOCTL_SD_GET_CARD_TYPE;

 vos_dev_ioctl(hSDCard, &msi_cb);

 card_type = *msi_cb.get;

The card_type value returned from the MSI_IOCTL_SD_GET_CARD_TYPE ioctl call is a char value which can

be decoded using the #defines within the SD Card header file. The below table summarises the available

card types.

Value
Card

Type
Description

0x01 SD_V1 Ver1.x Standard Capacity SD Memory Card

0x02 SD_V2
Ver2.00 or later Standard Capacity SD

Memory Card

0x03 SD_HC
Ver2.00 or later High Capacity SD Memory

Card

0x04 SD_MMC Not SD Memory Card, may be an MMC card

0xFF SD_INV SD Card is invalid and cannot be used

Figure 4.4 – FFS driver attached to

Fat API

 Copyright © 2010 Future Technology Devices International Limited 10

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

4.3 Opening File and Writing Data

At this stage it is now possible to completely control the FFS on the SD Card using the VNC2 application.
This sample demonstrates how to create a new file on the device, write a string of data to that file, read
that same string back and to then close the file. For a full list of all FFS operations that are available
through the FAT API refer to the stdio section within the VinIDE help file.

 // Open a new file for writing.

 File = fopen(“AFILE.TXT”, “w+”);

 fwrite(s, strlen(s), sizeof(char), file);

 fseek(file, 0, FAT_SEEK_SET);

 fread(dir, strlen(s), sizeof(char), file);

 fseek(file, strlen(s), FAT_SEEK_SET);

 fwrite(dir, strlen(s), sizeof(char), file);

 fclose(file);

 Copyright © 2010 Future Technology Devices International Limited 11

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

5 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.

Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803

USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)

Room 408, 317 Xianxia Road,
Shanghai, 200051

China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com

E-mail (General Enquiries) cn.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com/
http://www.ftdichip.com/
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com/
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
http://www.ftdichip.com/
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://www.ftdichip.com/

 Copyright © 2010 Future Technology Devices International Limited 12

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices

International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance

requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other

materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer

confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI

devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold

harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without

notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole

nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material
or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2

Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

http://ftdichip.com/

 Copyright © 2010 Future Technology Devices International Limited 13

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

6 Appendix A – References

Document References

Vinculum-II Embedded Dual USB Host Controller IC Data Sheet

Vinculum-II IO Mux Explained

Vinculum-II Tool Chain Getting Started Guide

Acronyms and Abbreviations

Terms Description

IOMux
Input Output Multiplexer – Used to configure pin selection on different package

types of the VNC2.

V2-Eval
Vinculum II Evaluation Board- Customer evaluation board for the VNC2 allowing

prototype development.

FFS FAT File System – A file system used to structure data within a block of memory.

VinIDE
Vinculum Integrated Development Environment – Development environment for

writing and building application code for the VNC2.

VOS Vinculum Operating System -

MSI
Mass Storage Interface – A common interface allowing file system drivers to

communicate with the underlying hardware.

API
Application Programming Interface – An abstract layer between user applications

and underlying system drivers.

VNC2 Vinculum II – FTDI‟s second generation dual Host/Slave IC.

IDE Integrated Development Environment

SD Secure Digital

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_Vinculum-II.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_139_Vinculum-II%20IO_Mux%20Explained.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_142_Vinculum-II_Tool_Chain_Getting_Started_Guide.pdf

 Copyright © 2010 Future Technology Devices International Limited 14

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

7 Appendix B – Code Listing

/*

This software is provided by Future Technology Devices International Limited “as is” and

any express or implied warranties, including, but not limited to, the implied warranties

of merchantability and fitness for a particular purpose are disclaimed. In no event shall

future technology devices international limited be liable for any direct, indirect,

incidental, special, exemplary, or consequential damages (including, but not limited to,

procurement of substitute goods or services; loss of use, data, or profits; or business

interruption) however caused and on any theory of liability, whether in contract, strict

liability, or tort (including negligence or otherwise) arising in any way out of the use

of this software, even if advised of the possibility of such damage.

*/

//SD_Card_Sample.h
#define NUMBER_OF_DEVICES 4

#define VOS_DEV_SPIMASTER 0

#define VOS_DEV_SDCARD 1

#define VOS_DEV_FTFS 2

#define VOS_DEV_GPIO 3

// SD_Card_Sample.c

#include “vos.h”

#include “devman.h”

#include “IOMUX.h”

#include “msi.h”

#include “fat.h”

#include “gpio.h”

#include “sdcard.h”

#include “SD_Card_Sample.h”

#include “SPIMaster.h”

#include “string.h”

#include “stdio.h”

// Forward Declarations

void firmware(void);

unsigned char IOMux_Setup();

// Globals

vos_tcb_t *tcbFirmware;

unsigned char IOMux_Setup()

{

 unsigned char packageType = vos_get_package_type();

 if (packageType == VINCULUM_II_64_PIN)

 {

 // SPIMaster to V2EVAL board pins

 vos_iomux_define_output(19 ,IOMUX_OUT_SPI_MASTER_CLK); // Slave Clock

 vos_iomux_define_output(20,IOMUX_OUT_SPI_MASTER_MOSI); // Master Out Slave In

 vos_iomux_define_input(22,IOMUX_IN_SPI_MASTER_MISO); // Master In Slave Out

 vos_iomux_define_output(23,IOMUX_OUT_SPI_MASTER_CS_0); // Chip Select

 vos_iomux_define_input(16,IOMUX_IN_GPIO_PORT_B_1); // Card Detect

 vos_iomux_define_input(15,IOMUX_IN_GPIO_PORT_B_0); // Write Protect

 }

 return SD_SUCCESS;

}

void main(void)

 Copyright © 2010 Future Technology Devices International Limited 15

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

{

 // SPI Master context

 15pymaster_context_t spimasterCtx;

 // GPIO context

 gpio_context_t gpioCtx;

 // Call VOS initialisation routines

 vos_init(50, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

 vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

 //***

 // INITIALISE DRIVERS

 //***

 spimasterCtx.buffer_size = VOS_BUFFER_SIZE_512_BYTES;

 15pymaster_init(VOS_DEV_SPIMASTER, &spimasterCtx);

 sd_init(VOS_DEV_SDCARD);

 fatdrv_init(VOS_DEV_FTFS);

 gpioCtx.port_identifier = GPIO_PORT_B;

 gpio_init(VOS_DEV_GPIO, &gpioCtx);

 // Create threads for firmware application (no parameters)

 tcbFirmware = vos_create_thread(50, 8192, firmware, 0);

 // Device IOMux Settings

 IOMux_Setup();

 // Start VOS scheduler

 vos_start_scheduler();

main_loop:

 goto main_loop;

}

void firmware(void)

{

 VOS_HANDLE hSPIMaster, hSDCard, hFat, hGPIO;

 msi_ioctl_cb_t msi_cb;

 gpio_ioctl_cb_t gpio_iocb;

 sdcard_ioctl_cb_attach_t sd_cb;

 fatdrv_ioctl_cb_attach_t fat_cb;

 fat_ioctl_cb_t fat_iocb;

 unsigned char *s = “Hello World!”;

 unsigned char t[12];

 unsigned char card_type;

 FILE *file;

 // Open a handle to each of our devices.

 hSPIMaster = vos_dev_open(VOS_DEV_SPIMASTER);

 hFat = vos_dev_open(VOS_DEV_FTFS);

 hSDCard = vos_dev_open(VOS_DEV_SDCARD);

 hGPIO = vos_dev_open(VOS_DEV_GPIO);

 // Configure the GPIO port to input.

 Gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

 gpio_iocb.value = 0x00;

 vos_dev_ioctl(hGPIO, &gpio_iocb);

 // Attach SPI Master and the GPIO to the SD Card driver.

 Sd_cb.SPI_Handle = hSPIMaster;

 sd_cb.GPIO_Handle = hGPIO;

 Copyright © 2010 Future Technology Devices International Limited 16

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

 sd_cb.WP_Bit = GPIO_PIN_0;

 sd_cb.CD_Bit = GPIO_PIN_1;

 msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_ATTACH;

 msi_cb.set = &sd_cb;

 vos_dev_ioctl(hSDCard, &msi_cb);

 // Attach the SD Card to the Fat File System driver.
 Fat_iocb.ioctl_code = FAT_IOCTL_FS_ATTACH;

 fat_iocb.set = &fat_cb;

 fat_cb.msi_handle = hSDCard;

 fat_cb.partition = 0;

 vos_dev_ioctl(hFat, &fat_iocb);

 // Attach the Fat File System to the Fat API

fsAttach(hFat);

 // Check we have an SD Card connected to the socket.

 Msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_DETECT;

 vos_dev_ioctl(hSDCard, &msi_cb);

 if(*msi_cb.get != SD_CARD_PRESENT) {

 return;

 }

 // Initialize the card in SPI mode.

 Msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_INIT;

 vos_dev_ioctl(hSDCard, &msi_cb);

 // Get the card type.

 Msi_cb.ioctl_code = MSI_IOCTL_SD_GET_CARD_TYPE;

 vos_dev_ioctl(hSDCard, &msi_cb);

 card_type = *msi_cb.get;

 // Open a new file for writing.

 File = fopen(“AFILE.TXT”, “w+”);

 fwrite(s, strlen(s), sizeof(char), file);

 fseek(file, 0, FAT_SEEK_SET);

 fread(t, strlen(s), sizeof(char), file);

 fseek(file, strlen(s), FAT_SEEK_SET);

 fwrite(t, strlen(s), sizeof(char), file);

 fclose(file);

}

 Copyright © 2010 Future Technology Devices International Limited 17

Document Reference No.: FT_000350

Vinculum II SD Card Example
 Application Note AN_155 Version 1.2

Clearance No.: FTDI# 175

8 Appendix C – Revision History

Revision Changes Date

1.0 Initial Release 2010-10-14

1.1 Modified front page format 2010-10-28

1.2 Modified figure 3.2 2010-12-14

