FTDI
Chip

Future Technology Devices International Ltd.

User Manual
AN 151

Vinculum 11 User Guide

Document Reference No.: FT_000289
Version 2.0.0

Issue Date: 2011-05-08

This provides information and examples on using the Vinculum 11
Toolchain, Firmware, Libraries and Sample code.

Future Technology Devices International Limited (FTDI)

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
E-Mail (Support): supportl@ftdichip.com Web: http://www.ftdichip.com

© 2012 Future Technology Devices International Ltd.

Table of Contents

1 INErOdUCEION. .. e 12
2 Getting Started GUIdEe.cooiiiii e 13
2250 I 191 ¥ g Yo [T T 1 o 1S 13
D22 @ AV T VT 13
2.3 Building Your First Application ... 13
2.4 Writing "Hello World® Application..............ccoooiiiiiiiiiiiiiinnaa.. 19
2.5 Writing an Application.........coooiiiiiiii e 27
D2 O o Yo [T I = {1 T 33
B Toolchain ..o s 39
3.1 TOoOIChAaIN BASICS. ... iiiiiiiii et eaaas 39
3.2 VINC COMPIIET .. 39
3.2.1 Compiler Command LiNe OPtiONS.coiiiiiiiiiit it 40
G It R o T a0 1 L= 1 L= Y o T 40
3.2.1.2 Compile Stage SeleCTION. ... 40

G T G 2 o 1 a0 1 1= g T f o 1 | 41
3.2.1.4 Compiler INformation OPTIONS.uuurii et eeeeeeeaaeeaeens 41
3.2.1.5 Compile Time OPtiONS. ...ttt et e e e aaaae e e e e eenaans 42
3.2.1.6 PreproCesSiNG OPtiONS.ttt ettt 42
G I A T 1 2= @ o) T 1 42
G = Y = Nl Y4 01 T Y 42
Gt R Y o = I @ T = 1= 43
3.2.2.2 Storage TYPe SPECIIIEIS ... 44
3.2.2.3 TYPE SPECIH OIS ettt e et 44
3.2.2.4 Data Conversion RefereNCeS.o 48
3.2.3 Special VNC2 Ref@IENCE ...t et aaaaaaaaas 49
3.2.3.1 ANSI C Feature Support SUMMIAIYt e e eeeaens 49
3.2.3.2 C Language ReStICIIONSttt e 50
3.2.3.3 SPeCial FEATUIES. ...ttt 51
3.2.3.4 FUNCTION Call. ..ttt ettt 52
3.2.3.5 ArChiteCTUIE ISSUEBSt e 54
3.2.3.6 Considerations of local vs global variables..............c.coiiiiiiiiiii. . 54
3.2.3.7 StHNG Literals. .. 54
3.2.3.8 SEOUENCE POINTS. ..ttt ettt ettt et e et e et e e et aae e e e 55
G g o] gl (= =] =1 1o 55
3.2.4.1 Examples for General ErrOrS. ..ot 57
3.2.4.2 Examples for Syntax Error COOES. ...ttt eaaeeaeenns 58
3.2.4.3 Examples for General Syntax Error CodesS......ovuiiiiiiiiiiiiiiiiiieeeaannnn 59
3.2.4.4 Examples for Conditional Statement Error CodesS........ccoiiiiiiiiiieainnnn... 60
3.2.4.5 Examples for Storage Classes Error Codes........viiiiiiiiiiiiiiiiiiieeeiaannn. 62

3.2.4.6 Examples for Declaration Error COAESooioiiiiiiii i 64

3.2.4.7 Examples for Constant Range Error Codes........oiiiiiiiiiiiiiiiiiiieeaannn. 66

3.2.4.8 Examples for Constant Error COOES........viiiiiiiiiii e 67
3.2.4.9 Examples for Variable Error COdes.coiiiiiiiiiiiiii e 68
3.2.4.10 Examples for Array Error COUESuuiiiiiiiii e eeeeaaeeeeens 68
3.2.4.11 Examples for Structure Union Error Codes.......coviiiiiiiiiiiiiiiiiieeeaannnn 68
3.2.4.12 Examples for Initialisation Error COAesS.oviiiiiiiiiiiiiiiiiiiiiiiaiaanaannn. 69
3.2.4.13 Examples for Function Error Codes......ouviiiiiiiiiiii i 70
3.2.4.14 Examples for Pointer Error COAeSttt eeen 70
3.2.4.15 Examples for Bitfield Error Codes.cooiviiiiiiiiii i 73

G 2 ST o (=T o 0T o =11 {0 Y 74
3.2.5.1 Pre-proCesSOr DIF€CTIVES ...ttt ettt e e 74
G o B = (o] gl = 1= =] o o = 76
3.3 VINASM ASSEMbIer. .. e 81
3.3.1 Assembler Command LiNe OPLtiONS.cuuuiiiiiii it i eiaaaaeaaas 81
3.3.2 ASSEMDIY LANQUAGE.ttt ettt ettt ettt et ettt 81
3.3.2.1 LeXiCal CONVENTIONS.ttt eeaaaaaeannn 81
3.3.3 ASSEMDIEr DIrECTIVES .. ittt et et et 82
G R TG T I B =\ = N D 1 =T o Y= 83
3.3.3.2 DEDUQGGET DIFECTIVES. ...ttt ettt ettt ee e eeeeaaeeeeeens 88

BC C T JC N = To I T o 1Y 98
3.3.3.4 File INCIUSION DIrECTIVEt 99
3.3.3.5 Location Control DIFECTIVES ... e e ns 99
3.3.3.6 Symbol Declaration DIr€CtiVEScoviiiiiiii e 101
3.3.4 Machine INSErUCTIONS ... eeeees 103
3.3.4.1 CPU General INStrUCTIONSconiii ittt et eeeenns 103
3.3.4.2 CPU Stack Operation INStruCtionS.coiiiiiiiiiiiiiiii i iieeee e eeeeans 105
3.3.4.3 CPU Memory Operation INStructionscooviiiiiiiiii i 108
3.3.4.4 CPU Bitwise Shift Operation INStructions..........ccccoiiiiiiiiiiiiiiiiieneaann.. 109
3.3.4.5 CPU Logic Operation INStrUCTIONS.ooviiiiiii i 114
3.3.4.6 CPU Arithmetic Operation COOeS.......coiiiiiiiii i eeeaas 117
3.3.4.7 CPU Bitwise Operation INSTtruCtionSovviiiiiiii i 123
3.3.4.8 CPU I/0 Operation INStruCtiONSciiiiiiiit it eieeeeee e eeeanns 124
3.3.4.9 CPU Comparison INSTrUCTIONS ..ottt 126
3.3.4.10 CPU Program FIow INStrUCTIiONS......cciiiuiiiiiie i iiieee e e e eeeanns 126
G T8 ST 4 0] gl = 1= = o o 130
B4 VINL LINKET ... ettt 131
3.4.1 Linker Command Line OPtiONS. ... e 132
3.4.2 MemMOrY and SEOIMENT ...ttt ittt ettt et aaaaa e e eaaaaa. 133
BiA B MaP Flle oo e 134
B4 4 ArChIVE File. e 135
G B S g 0 gl = 1= = o o = 136
3.4.6 Special VNC2 Ref@IENCE ...ttt et reeaa e eeeenas 138
B D VINIDE. .. e 139
3.5.0 ABOUL ViINIDE. ...ttt ettt ettt ettt ettt et 139

3.5.2 The USBr INEEIACE ... et e e e ettt ae e e eaaenes 140

3.5.2.1 The Tabbed TOOIDA.......... e e aeeeas 140

3.5.2.2 The Source Code EditOr.ot eeeeaas 142
3.5.2.3 The Project Manager. .. .ottt e e et ettt eae e e aaaaaee e eeeannn 142
3.5.2.4 The MesSsages WINGOWcoiiiiiiiiiiiii ittt as 143
3.5.2.5 The Watchlist WINdOW.ooiiiiiiiii e 143
3.5.2.6 The MemOory WINQOW. ...ttt et et 144
3.5.2.7 The BreaKkpoint WINAOWouuiiiiii i e eaeae e e eeeanns 145
3.5.2.8 Managing the Panels.o 145
B.5.3 USING VINIDE.ttt ettt ettt ettt e et e e et eaaae e e e e aaaaaeeeeenennn 149
3.5.3.1 Application WIzard.coooiiiiiiiiiiii e 149
3.5.3.2 Project/File HandliNgccoomnniiiiiii e e e e eeeanas 158
3.5.3.3 BUildiNg @ PrOJECT .ttt 170
3.5.3.4 Debugging @ PrOJeCT. ...ttt e, 174

I STRC TR ST o o] 1= o M0 o] 1S 0 177
3.5.3.6 The IDE OpPtiONS. ..ttt ettt et ettt et e e et eee e e e e aaaaaeeeeenennn 184

R TN TR A =1 T [T 191
3.5.3.8 Keyboard SOt CULS.....coiiiit et eeeanas 194
3.6 VINPIrg Programmeroiiii ittt a e 195
3.6.1 Programmer Command Line OPtiONS........ciiiiiiii et eeeeanas 195
3.7 VINUSEN CUSTOMISEY ...ttt et a e enaaans 196
3.7.1 Customiser Command Line OPLtiONS. eeeeeees 196
7 e g 1LY 7= T < T 197
4.1 VOS KernNel. .. e 197
4.1.1 VOS DefiNItiONS. ..ttt et 198
4.1.2 Kernel ConfiguratioN.couereiiiiiii ittt 198
g 2 I ¥ Y T 11 o () 199
4.1.2.2 vos_set_idle_thread_tch_Size()....ccvuuiiiiiiii i 199
4. 1.3 Thread Creation.ottt et 200
4.1.3.1 vos_create_thread()cuer e 200
4.1.3.2 vos_create_thread eX() ..cuuoeeeei i 201
4.1.4 Kernel Scheduler. ... e 202
4.1.4.1 vos_start_scheduler() ..coveeoi i e 202
4.1.4.2 VOS_delay _IMSECS() - uuuututttttitt ittt 202
4.1.4.3 v0S_delay_CanCel() ..uueeeiiniii i 203
o I T Y 1 (=3 203
4.1.5.1 VOS_ NIt MUEEX() - nn ettt ettt e et ettt et e et et e et e et e e 205
4.1.5.2 VOS_I0CK MUEEX() -« e e eeeetiitiitiie ettt ettt ettt 205
4.1.5.3 VOS_tryloCK MUEEX() o eeiiiiie et 206
4.1.5.4 vOS_UNIOCK _IMUEEX() . -t v ettt ettt ettt e et e e aans 206
4.1.5.5 vos_get_priority_ceiling() Advanced..........cooiuiiiiiiiiiiiiiiiii e 206
4.1.5.6 vos_set_priority_ceiling() Advanced.............oooiiiiiiiiiii i 207
g G TS 7= 1 o L0 1= 207
4.1.6.1 vos_init_SemaphNOre()uueeeiiiii e 208
4.1.6.2 vos_wait_Semaphore() ..cveuuiiii i 209

4.1.6.3 vos_wait_sSemaphore_eX(). ... o eee e 209

4.1.6.4 vos_signal_Semaphore() . .c.uueee e 210

4.1.6.5 vos_signal_semaphore_from_iSr().....coeeeeiiiiiiiiiiiii i 211
4.1.7 Condition Variables. 211
4.1.7.1 VOS_INIt_CONA_VAI() .. ettt et 213

v S I 2 Vo T Y V7= 1) i o o] i Lo Y=Y () 1 213
4.1.7.3 vOS_SIgNal_Cond_Var() .. ceeeeeiiimeii e 214
g I S T = | 10 23 o= 214
4.1.8.1 VOS_STACK USAGE() -« ctrrttriitiiieii ettt 215
4.1.8.2 vos_start_profiler()......oeeeeiiii 215
4.1.8.3 VOS_STOP_Profiler() «.eeeeeeee e 216
4.1.8.4 VOS_get_Profile (). e 216
4.1.8.5 vos_get_idle_thread _tCh()coioiiiiii 217
4.1.8.6 CPU Usage EXampPleccoiiiiiii e et e e 217
4.1.9 CritiCal SECTIONS. ... e 218
4.0.10 DEVICE MaANAQEN ...ttt ettt ettt et e et et e et aaa e e e e et e aaaeee e e eenaaans 218
4.1.10.1 Driver Initialisation e 220
g I I 2 I 41V =T @ o = = f [0 1 222
4.1.11 Hardware Information and CONtrol. i 225
4.1.11.1 vos_set_clock _frequency() and vos_get_clock frequency().............. 225
4.1.11.2 vos_get_package_TYPE() - creememmmmiei it 225
4.1.11.3 vos_get_Chip_reViSioN() ee e 226
4.1.11.4 VOS_POWET_AOWN() -t ettt ettt ateeaa e aataeraeea e aaa e e aaaaaaanns 226
4.1.11.5VOS_Nalt_ CPUQ . c et 226
I I I SRRV o Eo R 1= = o Y/ o (o2 () 227
g I I VY - o T (Yo I 7= 227
4.1.12.1 vos_Wdt_enable()......cuvriiiiiiii 227
4.1.12.2 VOS_ WAL ClEAN() u it ettt et ettt 228
I G B =T g T ST =T Vo = 228
I R T R Y ST =Y YT = 229
4.1.03.2 IOMUX SEIVICE. . eeeeittet ettt ettt ettt et e ettt et ettt et et e et aeee e ae e e aaaann 234
I R T B € = [@ ST =T V(o3 T 237
4.1.13.4 Memory Management. 244
T e I 15 1 I] V< 246
4.2.1 HArdware DEVICE DIIVEIS.ttt et e e et et et ae e ae e reaeeaeeenn 246
4.2.1.1 UART, SPIl and FIFO DIiVEIS. .. cciteiititeteeeateeeeeeetaatataeeaeeaaaaaaaaaaaaaaaannn 246
i 2 U ST = o (0] A D4V 266
4.2. 1.3 USB SlaVe DIV T ..ttt ettt e et 307
i I € [BI04 Y7 323
i R 0 07> I3 4V 335
i I G T TV Y I 7 344
N A = |V =T (=T o B 1V =T 353
4.2.2.1 Mass Storage INterfaceooiiii i e 353
4.2.2.2 USB HOSt Class DIIVEIS ...ttt eeeeeeeeteeaetaetaeeaeeaaaaaaaaaaaaaaaannn 356
4.2.2.3 USB Slave Class DIIVEIS. ...ttt e 400
4.2.2.4 SPI Peripheral DIIVErS. ...t 404

N S =] T=T ¢ T=) A 1V 423

4.2.2.6 File SY S IS, .ttt ettt et e ettt 438

A A N = £ 495
A .3 FTDI LIDraries. ..o ettt 499
2 0t N o3 Y4 0 1= 499
2 Nt O 1= 1 0 T o 500
G I 1= - [] o - 500
2 G B 1= o o 1 f o 500
G T I S 1= o | o | 501

7 T I ST L= o | = T o 1 501
G T IO 5 T 13 (011, V=T 501
R i O A 1T o] | 502
G T I T 1= o 11 T 502
e T I T 151 - o =S 502
G 0 I 10 I £ o 503
7 O It 1o [T 503
G T = W o | o 503
4.3, 2. S ATEAC. i 505
4.3.2.2 STAIOATLAC . ..o s 506
4.3.2.3 STAINATLACK. ... 506
4.3.2.4 StAOULATTAC . ..o s 506
4.3.2.5 St ALLAC N oo e, 507
G T 5 N o 1 1 507
R F R A (o 011 o 1 508
G S T = - Vo [509
G T T V.Y | 509
G 0 0 I o [1 - 510
4.3, 2. 00 FIIUS . s 511
G T 1 =Y o 511
G T 5 T i = | 511
G a1 O o 1) 0 512
G T L T = o [0 1 | 512
G B G T = o |1 513
G T = o (=Y o 513
4.3, 2. 08 SPMINtT i e 513
2 Tt LS T = 0070 1Y < 514
G 0 O I = - g 7= 514
G T T [11 oo 515
G T 70 I w3 T |1 516
G T = o | 1o 516
G 2 - Y o 1 517
G T N2 W o o I 517
G T N - Y o | 517
G T N R o) [518
4.3.4.5 MAIIOC e 518
2 S T o Y | [o 518

T N ' =YY 519

G T T = 4 T 519

4G T Tt I 0 0= 0 o o) 520
G TS T 1 0= 0 - = 520
G T TG 1 o 10 1 521

G T N g o 0 521
4G T TR 1 o)V 522

G T T W g o)Y 522

4 G T T A1 N (o3 X H P 522
e T T < 11 1 (=1 o 1 523
G T TN T ¢ 1[0 523
G TN G T =T ¢ ¢ T 523

5 Sample Firmware Applications...........ccovvvviiiiinnaan.. 525
5.1 Sample Firmware OVEerVIEWciiieiiiiiiii e iiiaaaaeanaaaanns 525
5.2 General Samples. ... 525
5.2.1 Template Sample e 525
5.2.2 GPIOKItt SamMPIE. .. i et e, 526
5.2.3 PWMBreathe Sample.o eeeeees 527
5.2.4 Philosophers Sample. et 528
5.2.5 RUNLIME SamMPIe ..o eeeees 529
5.2.6 HelloWorld Sample. ...t ettt iaeae e eeaaaas 531
5. 2.7 RTC SaAMPI . e 532
5.3 USB HOSt Samples. ... e 533
5.3.1 StilllmageApPp Sample. ... e 533
5.3.2 USBHOStGENENC SamMPIE. ...ttt ettt aaaaa e e eeeeennn 535
5.3.3 USBHOStGPSLOgger Sample ... 536
5.3.4 USBHOSTHID Sample.ouiiii it et ettt eaeaa e e eeeeenas 537
5.3.5 USBHOSTHID2 Samplet eeeeees 538
5.3.6 USBMIC SamPle ... e ettt et 540
5.4 USB Slave Samples. 541
5.4.1 USBSIaveFT 232APpD SamPle ... e 541
5.5 Firmware Samples. s 542
LI T A V[t g 0 V7= = 542
LIS I Y 2l Y e T 0 0 V1Y Z= 1 = 542
B5.5.1.2 V2DPS FIMTTIWAKIE. . .« e ettt ettt e ettt et ettt et e et e e e e neeees 543

6 VINCO Libraries. ... 545
6.1 Before using the Vinco libraries...........cccoiiiiiiiiiiiiiinn . 545
6.1.1 Data types in VINCO lIbraries. e eeeeans 545
6.1.2 Vinco Application Wizard.ooiiiiiiii e 546
6.1.3 Main.C and VINCO. N ... oo e 548
6.1.4 VINCco sketch format. i 548
6.2 Digital 170 LIDrary eeeeeees 549
(T2 I o 11117 [T [() 550

LS 2o [o 11 &= Y AV 1 1 =T () 550

(S22 o [T 1 = | (== o [() 550

B.2.4 POIt ACCESS APIS . e e 551
(T2t R o o] 1Yo T [() T 551
LS A o o o YL 4 = () T 551
(T2 G B o o] o L= - Vo [() S 552

6.2.5 UsiNg ON-D0Ard LEDS.coiiiiiiiii e 552

6.3 TiIMeE LIDrary ... e 553

6.3, MIIIS() oo et 553

[T T2 ¢ oo o 1= () 1 553

B.3. 3 e Ay () ceeeeeiii i et 553

6.3.4 delayMicroseCONdSA8MRNZ() et 554

6.3.5 delayMicroseconds24MRNz() ..o e 554

6.3.6 delayMicroSeCONASI2MRNZ() ot et 555

6.4 Serial LIDrary ... s 555

L3t oY= o [| T () 555

[T 22 =T o o [T 555

6.4.3 available() - .o oooii e 556

[T R = - Vo [556

B. 4.5 W) «eiiiiiii ittt 557

[T S 11T o T () 557

L T o 41 | W () 557

[T 0 S o 11 [() T 558

LG RR e I o] g1 1 =3 A ¢ () TP 558

6.4.10 Notes on using the Serial library e 559
6.4.10.1 POrting GUIOE ...ttt ettt ns 559
6.4.10.2 Getting the SetUp readycuuuiiii i iaaaa e e eeenanns 559

6.5 INterrupts Libraryo 560

LGRS R o =T B o) R () 560

(SRS T £ 1o a1 =Y 8T o) =3 () 561

6.5.3 attaChINterrupt() . oo oo e 561

6.5.4 detaChlNterrUpt(). ..o coiii i ettt e, 562

6.6 Analog Library ... 562

(ST 70 A= g =1 o T = U [() T 562

6.6.2 ANAlOGWIEE() - o e e ettt 562

6.6.3 Notes on usage of the Analog I/O0 library.......cccooviiiiiiiiii e 563
6.6.3.1 ReferenCe VOItAgE .. .o e 563
6.6.3.2 ADC converter resolutionoooiiii i 563
LI S T N VL1V o T o 1 | 563

6.7 EthernNet LIDrary e 563

6.7.1 Ethernet core fUNCIONS. ... oo eeeees 563
LS T A T N o T=To [011 = T 1 o () 563
(S 2 o =T [111, = T 1o T () 564
LS RGN o T=To [1011 F= Ted N o T CIT YA o | () T 564

B.7.2 Server fUNCTIONS . e 565

B.7.2.1 DEGINC) - e 565

6.7.2.2 aVailable () oo oo . 565

B.7.2.3 WHEEBUT () - e oot e 566
LT VLY 4 =1 () 566
B.7. 2.5 WIEEBY O () « o 566
6.7.3 ClieNt fUNCEIONS ..ot eeeeees 567
LT A T A o 1= | o 1 o () L 567
[T 2 o o] 1 1= o (L 567
LSRG TG B o o T 1= T o = o [() 568
LT I V1Y 4 = = (L 568
SRS T IRV 11 (= 1] 1 () S 569
LS T S TV 1Y] 1 €= = Y4 =Y () 569
6.7.3.7 available() ... oo o 570
[T T < T - U [() T 570
B.7.3.9 TIUSII() e e 571
LT Tt 0 1 =3 o1 () 571
LS R0 o [I 10 o o3 o (0] o 1= 572
LTt R o = o [T () 572
LT A =TT T | () T 572
[T G B Y=Y g T 1S T o () 573
LT A A == o [() L 573
6.7.4.5 available () . .cove oo e, 574
6.7.5 Porting guide from Arduino Ethernet library..........ccooiiiiiiiiiiiiiiiiiiiiiiiees 574
B6.7.5.1 TCP CleNt. .. et 574
(S T2 I O =TT Y = 575
B.8 MP 3 LIDIary ..o 575
(ST = 700 A o 7= o 1 T T 575
6.8.2 SEEVOIUME() - e e e i e 575
(ST S T Y=Y o 7= T () T 575
6.8.4 SEUTrEbIE () « o e s 576
(SIS TS Y1 =1 T () T 576
LSS NG == o 1 () 577
B.8.7 CaANCEI) e et e, 577
6.8.8 SOTERESET() - e e i i iiii ittt e 577
(SIS T T T= Vo | L= 1Y () 578
6.9 USB HOost Printer Library......coooiiiiiii i 578
(TS T8 Ao o = o T () T 578
6.9.2 getCapability (). .. cueeiiii it 578
(SIS TG o 1= 20 S o= U = () 579
B.9.4 SOTERESET() - e i iiiii ittt e 579
(SIS TR ST,V | =Y 580
B.9.6 ClOSE() «reiiiiiiii i s 580
6.10 USB HOSt FT232 Librarycccooiiiiiiiiii e 581
(200 K0 0t 0 o T o T 581
L 0 T2 =7 =Y () P 581

6.10.3 GETRXSTATUS() teeieteitiiiiii ettt et ettt et ettt aaaaaaaeaaaaa, 582

(ST KO o =] = 1 U= () 582

6.10.5 getMOdEMSTATUS ().t ttttetete et ettt et 582
6.10.6 gETLINESTATUS() .. eteetitiiiie ettt ettt et ettt et e et e e e eeea et e e eaaaaan 583
6.10.7 SEtBAUARATE () .ot i ittt ettt ettt ettt 583
(S0 K0 & B =Y = [0, @ o] [T 584
6.10.9 SEtDATABIES() e e e et ettt ittt ettt ettt 584
(ST K0t 0 =1 =)] o =1 = () 585
L O T == o = 1 74 () T 585
B.00. 02 SEERT S() e e ettitiii ittt e 586
ST KO I R R o3 [T T ¢ = IS () 586
B.00.04 SEEDT R() -t tteitt ittt ettt e 587
ST KO I R o T T ¢ 2 I () 587
(I Ot G 1= === 1 T () T 588
6.10.17 SetBreakOr () . .oo e e 588
B.00.18 SEEXON():c et ettett ettt ettt ettt ettt e 589
B.00.19 SEEXOF () « ettt ettt ettt ettt 589
(ST K0 2 0 =1 = I X = o oY 7 () T 589
6.10.21 getLatENCY () e eeeeeeiieit ettt ittt ettt 590
[T KO 22 =1 = =1 1Y/ e Yo = () 590
6.10.23 getBItMOAE (). . oo e it et e 591
6.10.24 readEEPROM() - ettt ittt ettt ettt 591
6.210.25 WITEEEEPROMU() -ttt ettt ettt ettt et ettt e ettt e e e e e e e 592
6.10.26 STAMTPOI() .. ettt e, 592
6.00.27 STOPPOII() - oo eeeeee ittt 593
(ST K0 22 S 0V 1 Y () 593
ST 0 B2 T == 1o [() 594
(200 0 {0 o3 [1= () 594
6.11 USBSIaVEFT 232, .. e eeeeeeeaeees 595
L 0 e 0 o o 7= o T () 595
(ST I 2 = o 2 €] o= 1 U 1= () T 595
6.11.3 SEELATENCY () «eeeieeiiit ettt ettt ettt et 595
(ST I I Y=Y o B =YY o 0] 0] = () 596
6.11.5 SetOULTraANSTEISIZE (). ot e i ettt et eeeees 597
[200 I T == U [() 597
L0 5 011V 1 = () T 598
(200 I < 2o [11 - () 1 598
6.12 USB HOSt HID LIDrary.....ccoooiiiiii it 599
(200 12200 R 0 o 1= 1 599
(S0 27 o 1=1 =TT of 0] o] ¢ () 599
[T 220 2o 1= o L= o o] o o () S 600
B.02.4 SEEREPOIT() « e e eeett ittt ittt ettt ettt 600
(ST 2253 = o e 1 Yo [601
6.12.6 SEEPIOTOCOI() c ettt ittt ettt ittt ettt e 601
[T 122 o =1 o [11 () 602

B.12.8 SEEIAIE() - eeeee e e 602

[T 22082 T - U [() T
L 2 0 I o3 [0 =7 = () 1 603
7 Contact INnformationN......ooeror e e 604

8 ReVISION HISTONY .. 606

S 7 Document Reference No.: FT_000289
FTDI Vinculum Il User Guide

Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

1 Introduction

USB Made EASY

@ FTDI
A\, Chip

Getting Started Guide

Vinculum Il Toolchain - Compilation and development tools for Vinculum I1I.
0 VinC Compiler
0 VinAsm Assembler
0 VinL Linker

0 VinIDE Integrated Development Environment

Firmware - RTOS, device drivers, runtime libraries for Vinculum I1.
0 VOS Kernel
0 ETDI Drivers
O ETDI Libraries

Sample Firmware Overview

Copyright © 2012 Future Technology Devices International Ltd. 12

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

2 Getting Started Guide

2.1 Introduction

The scope of this document is to provide an introduction to using the VNC2 toolchain. This document
is intended for people who have successfully installed the VNC2 toolchain and is provided as a
getting started guide for first time users.

FTDI provide a number of sample applications with the toolchain installation, these samples are
designed to familiarise users with the supplied FTDI drivers, libraries and development environment.
It is recommend that to follow this tutorial more easily all files installed during the installation are
kept in their default location as per the installation wizard.

All code samples in this document are provided for illustration purposes only. They are not
guaranteed or supported by FTDI.

2.2 Overview

The intention of this document is to give novice users of the Vinculum-II software development
toolchain the knowledge to build and run their first sample application and to then use this
knowledge to go onto write and build a first application from scratch. It does this using a short
tutorial.

The tutorial firstly focuses on the Kitt sample, provided along with the Vinculum-I11 toolchain, to
demonstrate: the opening of projects; building firmware for the VNC2; loading this firmware onto the
device; running the firmware on the VNC2 and finally using the debugger to step through code.
Secondly, it introduces writing an application from scratch based on the Hello World sample. This
demonstrates how to use FTDI supplied device drivers and outlines the general structure
applications may take.

2.3 Building Your First Application

Installing the VNC2 toolchain (using the default settings) results in the toolchain being installed
within the Program Fil es/ FTDI/ Vi ncul um || Tool chai n directory on the PC’s local hard disk; the
installer creates a start menu shortcut, again under the FTDI/ Vi ncul um || Tool chai n folder
heading. The VNC2 IDE is located within either of these two folders; to launch the application double
click on Vinculum Il IDE icon.

Opening the Sample Project

This is an overview of the IDE GUI, the layout may not match exactly Figure 1, however, this can be
easily modified using the built-in docking manager.

Copyright © 2012 Future Technology Devices International Ltd. 13

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

i 2 e W TR S s

Z T &
@ File Edit View Build Detug W

i L [I .| = a
S A S wave | oo MO oo Soe 4 cee | P optione

\'ﬁhm]_—wmm-gs - e Memary Wirdow
010234567809 ABCDEF

: = = [Enstle. Flenameiaderes: e Lencth
& Messages ax

e Man Watch Windos A%
Hame vakie

2 Theead eruger %

= Thest Procty smee ThesdType CPU(%) Peskstack (Bytes) Current Stosk (yees] Quantm Thresd address

o Local Vistch %
Hame vakie

Thieads: U RTOSFlags Stack Status
[

Figure 1

The tabbed tool strip running along the top of the screen gives access to the menu and sub menu
items within the IDE.

Within the File tab, as above, notice the Project subcategory, click on the Open button. By following
the default settings within the installation wizard the FTDI provided samples are saved within the My
Docunent s folder. Using the project dialog box, browse to My Docunent s and find the folder FTDI /

Fi r mvar e/ Sanpl es/ ReleaseVersion/ Gener al . Within this is a folder called GPI OKi tt containing a file

GPI OKi tt.vproj (vprojis the file extension used by all VNC2 project files) double click this file to
launch it within the IDE.

Building the Application

Notice that when an application is opened within the IDE the Project Manager window now contains
all the files relevant to that project. If the Project Manager window is not visible go back to the
tabbed tool strip, along to view and make sure that the Project Manager box is checked (Figure 2).
IDE panels can be dragged and docked anywhere on the screen using the built-in docking manager,
simply click and hold the title bar of a panel to free it and then drag it to the desired area of the
screen.

Files within this project can now be opened within the editor window by double clicking them; the
editor window allows multiple files to be open concurrently. The archive files under the Libraries
folder contain FTDI supplied drivers and VOS Kernel Services, these files cannot be opened or
edited.

@ L 2

it =]
File Edit View Build Debug
-

=

y P E 7 =) .
1| 7 w9 2
Messages | Project | Properties | Dizzssembly Show Map Flle CPU Status Memory Window Watch Locals Breakpoints | Thread Manager Codelnspector
ProjectPansls Debug Pansls Plugins
Figure 2

To build the sample Kitt application: go to the tabbed tool strip and along to the Build tab. In the left
hand side of the panelis a button called Build, this will generate the ROM file (firmware) that can be
programmed into the VNC2 IC. Note that under the Build Configuration sub-category the project is
set in Debug mode; this is important at this stage as it will allow debugging of source code after the
ROM image has been loaded into the VNC2 device.

Copyright © 2012 Future Technology Devices International Ltd. 14

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

GPIOKitt - Project Manager i

4{ GPICKtt

4 -] FTDI Libraries
4] Libraries

4) Kernel
‘ kernel.a
4] Indude
4] Kernel

. | vosh

GPICKItt.c
GPICKItE. R
GPIOKIt jomux.c
ReadMe. txt

After clicking Build the IDE will attempt to compile, assemble and link the source code into a format
that can be loaded into the VNC2. If the source code within kitt.c hasn’t been altered there should
be no compilation errors, meaning the Kitt application should build first time.

¢ v D2

File Edit View Build Debug

L

? il . ; ,\):? ii—‘u __==.ru Y Debug -

=

Make Build Clean Libraries HeaderFiles Options

Build FIDT Libraries Project Builld Cenfiguration

The outcome from a build attempt is displayed within the Messages Window at the bottom of the
screen. The last line within the Messages Window indicating that there have been O errors from the
build shows that the IDE has successfully created the ROM file.

[VinL.exe] : O errors, O warnings and O informational messages
Flashing VNC2

The next step is to program the ROM file from the above build process into the VNC2 flash memory,
but first connect the VNC2 to the host PC (Figure 3). This demonstration uses the V2EVAL with the
64 pin QFN daughter card installed. The debugger port is connected to the host PC via the blue USB
cable (shown at the top of figure 3). The power switch for the device is located just below the black
power supply socket in the top left corner of the screen; in this mode, this device is self powered
and therefore does not require an external power supply to operate. When the V2EVAL board is
connected, the host PC may attempt to install FTDI drivers for the FT4232H connected to the
debugger port.

Copyright © 2012 Future Technology Devices International Ltd. 15

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 3

After connecting the V2EVAL board as shown in Figure 3 ,open up the IDE and select the Debug tab
within the tool strip Selecting the drop-down menu within the Debugger Interface subcategory
initiates the IDE to search for connected devices and, as can be seen below, automatically selects
the debugger interface of the V2EVAL board. When a debugger interface is selected the Flash,
Verify, Start and Reset buttons also become active. To program the flash memory of the VNC2 select
Flash from the Debug tab, a dialog box appears showing the Kitt.rom image file that was built
earlier, select this file and press open.

Ve TDE iSRS i R i

oz)s
; File . Edit Wiew Build Debug }
FJEvSh Vel'ifv Start falt Stop Reset Step Stepinto Step Out Run To Cursor !WCSZ% package Options
Program Debug Step E Debugger Interface Connect.,,

The IDE attempts to program the VNC2 flash, all relevant information will be shown in the Message
Window at the bottom of the screen.

Running the Application

To run the Kitt sample, press the start button in the Debug tab. The four LEDs located in the bottom
left hand corner of the V2EVAL board should now be sequentially flashing signifying that the device
is running correctly. The Halt and Stop buttons become active only if the ROM file loaded into the
VNC2 has been built in debug mode. Halt can be used to suspend execution at the current line

Copyright © 2012 Future Technology Devices International Ltd. 16

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

within the disassembly file. Stop can be used to halt executing and stop the firmware on the VNC2
executing.

Debugging the Application

The debugger interface supplied by FTDI allows for source code debugging at C and assembly level;
this tutorial illustrates using the C level debugging.

The IDE allows breakpoints to be added to the C source, in the below diagram (Figure 4) a
breakpoint has been added to the source code at line 82. A breakpoint is added by clicking the
desired line number in the left hand side gutter of the screen. Breakpoints can be placed on lines
with no code, for example lines with comments, but these are grayed out when the debugger starts
and will not be hit. VNC2 supports 3 breakpoints being set concurrently; any extra breakpoints are
deselected within the Breakpoint List window and are grayed out within the editor.

Copyright © 2012 Future Technology Devices International Ltd. 17

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

view | Build Babug

T oM w M e [}

i

T Edit
» S

Messages Project Properties Diﬂa;isﬂ'l"bh’ Show Map File CPU Status MemonyWindow Watch Locals Breakpoints || Thread I

i

! Project Panzls Debug Pansls

vos _gplio write port(GPIO PCRT A, portData):;

| GPIOKitte |23
57 /% Applicatlion Threads =/
| = =
589 void firmware ()
el unsigned char portData;
62 unsigned char wvalue;
63 unsigned char i;
63 unsigned char direction;
65
65 direction = 0;
67 value = 1:
aa i = D03
70 portData = value;
T2 S/ B=t all pins teo outpnt
73 vo2_gplo_ set port mode (GPIC PORT A, OxFF):
T5 £/ Write dats to the GPTO port.
TE

T8 while (1)

RO vos_delay msecs (125); L wait for a bit
3 B2 if (directiom == 0)

g4 /S covnting up

BS i++:

Bg

BT if (1 = 77}

EE direction = 1;

B9 ¥

oo else

a2 S/ connting dovn

93 T==i%

94

o5 if (1 == D)

98 direction = O;

o7 }

it b

a3 value = (1 << i}

portData = walue;
s/ Writes data te the GPIO port.
vos_gpio write port (GPIO PORT A, porctData):

|
o
o

Copyright © 2012 Future Technology Devices International Ltd. 18

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

Figure 4

To hit a breakpoint press Start within the debug menu. The application runs to this breakpoint and
execution from the VNC2 stops; this allows for lines of code to be single stepped using the Step
control panel within the Debug menu.

Individual variables within the source code can also be added to a watch list; this allows for the
value of certain variables to be monitored during execution of the source code. To add a watch bring
up the Watch window from the View tab within the tool strip. Right click within the Watch List and
select Add Watch; enter the name of the variable to be monitored and press Add Watch.
Alternatively, select the variable you are interested in and either right click and choose Add Watch or
press Ctrl+W. Figure 5 illustrates the variable value added to a watch list. All watches that have
been added are displayed within the Watch List; a watch that has a value of undefined is either
outside the current scope of execution or is not defined within the current application. During single
stepping of code it is now possible to monitor changes within the value field of each variable to aid
with debugging.

. Vi 152

Edit View Bulld Debug
D) E " e

Messages Project Properties | Disassambly Show Map File CPU Status' Memory Window | Watch | Locals Breakpoints | Thread M

et 2 :
bt langs | Main Watch Window @
GPIOKitt.c (3] gpiocrlh GPIDKitLh [Vahe |
) = : 0x01
57 /% Applicabion Threads +/
SRR ror ox0l
. . ', Ox00
5% wvoid firmware() — P
60/ -
&1 unsigned char portlata;
&2 unsigned char wvalue;
63 un=signed char 1i;
&4 unsigned char direction;
65 Undo Ctrl+Z
B direction = 0; Reda Chiley
5T value = 1;))
EE = 0 Cut Ctrl+¥%
&9
S Copy Ctrl+C
] portData = value;
1 Paste Cirl+V
12 S# Set all pins to ooty
Delete
7 voS_gplo_set port mode
74 Select All
75 rd Weite data to the GEI Add Watch Cris W
78 vos gpio write port (GPI e Lidid
77 Toggle Breakpoint
TE while (1} Find Declaration
a0 vos_delay msecs(125); Af walt for a bit
g 22 if (direction == Q)
Figure 5

2.4 Writing "Hello World" Application

This section illustrates the creation of an application from scratch based upon the Hello World sample
provided by FTDI. Hello World is a simple application that connects to a USB flash drive, creates a
new text file on the drive and writes the string “Hello World” to this file. This project demonstrates
the main components of writing an application and how to use a selection of the provided drivers,
Kernel services and libraries.

Copyright © 2012 Future Technology Devices International Ltd. 19

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Creating a new Project

To create a new project, go to the File tab within the toolbar and click New under the Project tab
(see Figure below).

.\I'Tnculum I IDE

N o SR | I
File Edit View Build Debug
_— ‘I.'% - |] | - o
™ o Oy 0 L 1 R VIR IR R A~
New' Sove Saveds Savedll Close Add Remove || Open E“' Modify Save SaveAs Close || 0 |-Optiors
Fle | Click to create new pru}ecth Print | Program

Alternatively, go to the circular Vinculum button and click New->New App Wizard Project

 Vinaiom 1 o2
W

Mew ¥ New File
Open Y Creat='a new file inthe project "
Save ¥ Add File

it . Add an existing fil2to the project
Close r New App Wizard Project
About Create a new VNC2 project
Help

| options || Bt

This pops up a AppWizard dialog box which allows for browsing to the project location and renaming
of the project and solution. It is necessary to complete the text boxes before clicking Finish.

Create a new project called HelloWorld as demonstrated within Figure 6.

Copyright © 2012 Future Technology Devices International Ltd. 20

Vinculum 1l User Guide

FTDI Document Reference No.: FT_000289
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxXx

AppWizard & =]

Mew Project ' TargetModule® Drivers I0Mux Kernel Threads Summary

Project Name: HelioWaorld
Project Directory: C:\Documents and Settings @'
[X] Create Directory for Project
Solution Name: HefloViorid
Mext = | | Finish | | Cancel

Figure 6

Note: The project and solution names do not need to match. It is recommended that the Create Directory for
Project check box is selected; this creates a project directory containing the project and any subsequent files.

Click Next to select the module and package used. When moving the cursor over the module names, pictures
are displayed to facilitate your selection process. Note that when selecting a package, it is possible to select
more than one package at once. Select V2Eval Board and 64 Pin, and click Next. Here, you can select
Hardware Drivers, Layered Drivers and Runtime Libraries. You are not required to select any of the drivers or
libraries at this stage. By clicking Next, you are shown the evaluation board, which is there for you to
automate the coding process. It is possible to select certain drivers in the Drivers tab (e.g. GPIO Port A) and
then by clicking on the relevant pins (e.g. SW5 and LED5) appropriately customize them (e.g. SW5/Signal
Sense/Signal Input). This way you are asking the AppWizard to generate a source code for the functions you
need (more on the IOMux feature in the following chapter). In the next two steps, you setup the Kernel and
Threads. Click Finish.

The result of creating a new project in the Project Manager panel is illustrated in Figure 7 which shows a new
project called HelloWorld which has been created.

Copyright © 2012 Future Technology Devices International Ltd. 21

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4) FTDI Libraries

4 -] Libraries

¢ a] kernel

: b ;_I kernel.a

4] Indude

4] kernel

b ;. vooh
b . | devman.h
| 10Mux.h
..... ;LI DMACH
i a MemMamt.h

b= | HellaWerld.c

o | HelloWarld.h

Lol | HelloWarld_jomus.c

Figure 7

Saving a Project

To save a project, use the Save As button within the File tab.

View Build Debug

b —F||r‘1Hm| }

) 1 | i .

o L g e e

| Open Mew S Saveds Savedll Close Add: Remove Cpen Modify Save SavelAs: Close : Options
! Flle Project Piint | Progsm

Alternatively, go to the Project Manager and right click “HelloWorld” ->Save As.

Copyright © 2012 Future Technology Devices International Ltd. 22

FTDI
Chip

Document Reference No.: FT_000289

Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

L&

- HelloWord

Make
Build 3

Clean

Add
Add Mew.., k

Save
Save As...

Rename

Manage Libraries... k

Options...

This will result in the Save Project As dialog box (Figure 8) appearing.

4 Save Project As

O(:) | .« MyDocuments » FTDI » Projects » HelloWorld

- | 4 || Search HelloWaorld o |

Organize =

i Favorites

B Desktop
4 Downloads
¢ Dropbox

5| Recent Places

= Libraries
[Documents

& Music
[Pictures
[=[Subversion

B videos

Lo Computer

File pame:

= Hide Folders

Mew folder

Y

— Documents library
HelloWarld

MName

% HelloWorld

11}

-

Date modified

13/04/2012 10:57

Type

Yinculum IDE Proj.. 6 KB

=~ @

Arrange by: Folder ¥

Size

HelloWorld|

Save as fype: ['lr’incumm I Project Files {"vpraj)

Figure 8

Select a location and filename for saving the project.

Copyright © 2012 Future Technology Devices International Ltd. 23

@ FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Adding New Files to a Project

To add a new file to the HelloWorld project, go to the File tab within the toolbar and click New in the

File group.

4 Vinculum I IDE L. W

T

Q. .-
File Edit View Build

i Wb |

Open Mew S5ue Save As Sawe All Close Add Remove

File

va gl = RF = R Yt

Modify Save SaveBs Close il Cptiors

Project Print Program

The New File pop-up allows different types of file to be added to a project. Firstly add a new C File
which will contain the main body of code for the application. Select C File in the New File pop-up and
press Add. Repeat this to add another new file to the project, this time a Header File.

r T ; ™
4 Mew File e [=] HH
C File Header File A5M File Text File

add || cancel |

e

Notice that within the Project Manager window, as shown in Figure 9, there are now two new files
under the project heading. To rename both files: right click on File.c within the Project Manager and
select Rename. The IDE prompts to save this file first before renaming it, click Yes to confirm this.
Within the save dialog box rename this file as HelloWorld.c and click OK. Repeat these steps for the

header file in the project, calling it HelloWorld.h.

Copyright © 2012 Future Technology Devices International Ltd. 24

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Hello World.vproj - Project Manager

(X

== Hello Warld. vproj - Project Manager
= Hello warld

Figure 9
Adding Existing Files to a Project

To add an existing file to the “HelloWorld” project, go to the File tab of the toolbar and click Add in
File tab group. The open dialog (Figure 10) allows for different file types(C, ASM, Header or Text) to
be added from this project or any other project. It is also possible to add multiple files by holding the
CTRL key while clicking on each of the files required to be added.

4 Vinculum IIDE

" 2 _
@". '
File Edit View Build Debug
. -
|

' §
(| i i + 7 . AV e bl LD ;‘:ﬁ &
Open’ New Save Save As Sawe All Close Add: Remove Open Modify Save SaveAs Close 2 Cptions

File Project Print Program

Alternatively, go to the Project Manager and right click “HelloWorld” project ->Add

Copyright © 2012 Future Technology Devices International Ltd. 25

FTDI
Chip

Document Reference No.: FT_000289

Vinculum Il User Guide

AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

—

il

b {7 Hellow—+
e Make

Build

Clean

Add
Add Mew...

Save
Save As,,,

Rename

Options..

Manage Librares...

To add a file click the Open button. All added files are added to the Project Manager window as

illustrated in Figure 11.

§ Add Existing File =5
G{:”) | |« FTDI » Vinculum O Toolchain » Firmware » kermel » include - | 4 || 5 iciuges ,Dl
Organize « Mew folder = = [f@)
: : B it v Siz
9r Eavortes Mame Date modified Type ize
= Desktop. || devman.h 28/02/2012 14:2T H File 4 ¥B
4l Downloads | BMAR 28022012 14:27 H File KB
++ Dropbox || GPIOCHLh 26/01/2012 11:05 H File 4 KB
;, Recent Places | IOMumeh 28/02/201214:27 H File 5 KB
|| MemMgmit.h 2B/02/2012 14:27 H File 1'KB
o Libraries | | vosh ZRI02/2002 14:27 H File 2KB
31 Documents
J‘r Music
[Pictures
=/ Subversion
B2 videos
‘B Computer
'i"ﬂ Metwark
File name: - IApplEc,at'mnﬂlﬁs (" %k, masm) "J
[Open J:] | Cancel |
A =
Figure 10

Copyright © 2012 Future Technology Devices International Ltd. 26

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

*# Yinculum Il IDE

| '
4 File Edit View Build Debug
5Lk = | e =
f‘? ‘ ‘@u _ | Debug v
[} - B -
Build Clean Libraries HeaderFiles Options
Build FTCI Libraries Project Build Configuration
= HelloWorlde Hellowarldh |23
= Helloworld (I e
= = FTOI Libraries 5 | e% Hellolorld.h
E| Include 5 |
= Kernel . . . L
ek 4 | #* Copyright @ 2010 Future Devices International Limited
- : 5
=] Drivers S . : : :
|| USBHast.h 6 |#* O Header file for Vinculum IT sample application
_ || USE.h 7| %% Main module
| BoMs.h B o
| FAT.R 9 |## Antkor: FTDT
_ | msi.h 10 | ## Praofect: Vimculum IT
=l Runkirne 11 | ## Module: Vinculum IT Sample Applications
|| shdio.h 12 |## Reguires: VOS5 BOMS FAT USBHeost GPIO STDIO
| string.h 13 |+ Comments: Uses stdio to write files on flashkh disk
= Libraries 14 | ==
= Kernel 15 |## History:
.| kermel.a 16 |%=% 3 — Imitial version
= Drivers STl P
_ | boms.a 18 |=/
£y Fai': ¢ o
= :;io ';5 = 20 |gdefine SIZEOF_FIRMWARE TASK MEMORY 0x1000
e : 21
= Runtirne
string.a 22 |#define NUMEBEE_OF DEVICES 4
Nl 23 |#define VOS_DEV_USB_HOST o
i 24 |fdefine WOS DEV EBOMS 1
| Helictorld.h 25 |gdefine VOS DEV FAT 2
Rt Fet 26 |gdefine VOS _DEV GPIO 3
27
Z8 |#define LEDO Ox0z
Figure 11

2.5 Writing an Application

In this section, an application is written which writes a line of text to a file on a disk. The listing is
available in the Getting Started Code Listing topic and it is in the samples directory under Gener al /
Hel | oWor | d.

Header File

To write some example code for this application starting with the header file: double click HelloWorld.
h within the Project Manager to open this file in the IDE editor. Header files contain forward
declarations of functions, constant values and any other global variable declarations that are shared
throughout the application. Although it is not strictly necessary to use a header file within this
project it is good programming practice to get into the habit of using them, especially when dealing
with more complicated projects than the HelloWorld application.

The first thing to define within the header is the size of stack memory that the application thread is
going to need. Details of this will be explained further when it comes to creating a thread within the
application.

Paste the following code fragment into the header file:
#defi ne SI ZEOF_FI RMAMARE_TASK_MEMORY 0x1000
Next decide the number of device interfaces that are used within the application. The HelloWorld app

requires: a USB Host driver to connect to the USB flash drive; a BOMS driver and FAT file system
driver to allow communication to the flash disc and also a GPIO driver allowing for visual feedback to

Copyright © 2012 Future Technology Devices International Ltd. 27

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

the user using the LEDs on the V2EVAL board. When initializing each device they must have a unique
identifier that is used within the Kernel's device manager. As well as this the number of devices used
within the application must be explicitly specified.

Again, copy and paste the following code fragment into the .h file.

#defi ne NUMBER_OF_DEVI CES 4
#defi ne VOS_DEV_USB_HOST 0
#defi ne VOS_DEV_BOMS 1
#define VOS_DEV_GPI O 2
#defi ne VOS_DEV_FAT 3

Lastly, add a forward declaration for the application thread:

voi d firmware(void);

The header file should now match closely the code shown in Figure 12.

HelloWorldh | &3 HelloWaorld.c FAT.h
Z0 |[#define EIZEOF_F IRHHARE_TASK_HEHORY Ox 1000
21

22 |#define NUMEER OF DEVICES 4
23 |fidefine VoS DEV U3E HOST o
24 lfdefine VoS DEV BOM3 1
25 |#define VOI DEV FAT 2
26 |(fidefine VO3 DEV GPIO 3
27 -

Figure 12

Other definitions of LED combinations are found in the listing of the header file in the Getting Started
Code Listing topic.

FTDI Libraries

With VNC2, all applications integrate with FTDI provided libraries that contain VOS Kernel Services,
device drivers and runtime libraries. Kernel Services provide all the data structures and primitives
that an application uses, as well as providing control throughout the lifetime of the application.

The Device Manager defines a standard API for device drivers. All devices are accessed using this
standard API to make application development easier. Device Manager is the interface between user
applications and Kernel Services. Runtime libraries contain functions which are common to most C
language implementations, for example string and standard 10.

The Hello World application requires a selection of Runtime Libraries, FTDI drivers as well as Kernel
Services to run. These are provided in the form of archive files which come with the VNC2 toolchain
installation. To utilize the provided libraries they must be included in the application. Each archive file
has a corresponding header file that defines its API, providing information on functions and data
structures that are contained within the archive files.

The Hello World application requires the following device drivers: USBHost acting as an interface to
the USB drive; the BOMS driver to communicate with a mass storage device; the FAT driver to
communicate with the device file structure and the GPIO driver which allows for visual feedback using
the LEDs. The string runtime library which contains string manipulation functions and stdio to provide
file 1/0 functions also needs inclusion. Finally Kernel Services, which provide overall control of the
device drivers, need to be added. As well as adding the archive files the corresponding header files
require inclusion.

3.4.2.1 Adding Library Files

To add Library Archive Files to the HelloWorld project, go to the Build tab of the toolbar and click
Libraries in the FTDI Libraries tab group.

Copyright © 2012 Future Technology Devices International Ltd. 28

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

& Vinculum I 1DE TS, 0

@". .-
File Edit Wiew Build Debug

? ! _.? |._i;_,.-!.” |’___:'|_u . | Debug -

e

Make Build Clean Libraries - Header Files Options

Build FT0I Libraries Project Bulld €onfiguratian

Figure 13 shows the Project Library dialog box which appears. To add a library, click the desired
archive file in the left hand pane and press the Add button. The list of added libraries is displayed
within the right hand pane.

Project Library

fyvailable Library Files Project Included Libraries

) Kermel) Kermel |

=] Drivers kernel.a |
FIFO.a {3 Drivers I
Py, a2 | boms.a :
SPIMaster.a fat,a
SPISlave.a usbhost. a
stillimage. a gpio.a {

Tirmers.a {3 Runitime
LIART.& string.a
USEHosEFTZ232.a skdio. a
1I5ESlave. a

ISB3laveFTZ32.a

1I5ESlaveHID, a

£ Runtime

ctype.a
e, &
stdlib.a

(0] 4 l ’ Cancel

Figure 13

The list of archive files that are required for the HelloWorld project are: Kernel.a, BOMS.a, fat.a,
usbhost.a, gpio.a, stdio.a and string.a.

The corresponding header files must also be added to the project. This is achieved by going to the
Build tab and selecting Header Files. Adding header files is done in the same manner as library files.
The header files required for HelloWorld are: vos.h, USBHost.h, USB.h, BOMS.h, Fat.h, GP10.h, stdio.h
and string.h.

Application Code

This section illustrates writing the main application code. A full listing is in the Getting Started Code
Listing topic.
There are three distinct parts to a VNC2 application.

The first of these is the includes section and global definitions; this is where declarations of the
Kernel services, runtime libraries and driver header files that are used within the application are.

Copyright © 2012 Future Technology Devices International Ltd. 29

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The second section is the main function; this is the entry point into the application and must only be
defined once. Within this function most of the setup and IOMux routines, as well as initializing
application threads, are taken care of.

The final component is user threads; these contain the main functionality of the system. An
application can have any number of user threads, however in this simple example there is only one.
In our application we will only have one thread. When it is created we require to keep a handle to
that thread. This is of type vos_tcb_t and defined as a global.

vos_tch_t *t cbFi r mwar e;

Driver Includes and Handles

The head of the HelloWorld.c file must contain include statements for all the header files, Kernel,
drivers and runtime libraries that are used. The files are the same as the header files that were
added during the FTDI libraries section of this tutorial.

#i ncl ude "vos. h"

#i ncl ude " USBHost . h"

#i ncl ude " USB. h"

#i ncl ude "BOWMS. h"

#i ncl ude "FAT. h"

#i ncl ude "GPI O h"

#i nclude "string. h"

#i ncl ude "hell oWorl d. h"

As well as header files there must also be declarations for any global variables that are to be used
throughout the application. When an FTDI driver is opened Device Manager returns a unique handle
for that device, each handle is of type VOS_HANDLE, declared within devman.h. These handles are
used throughout the application to uniquely identify each device so are therefore declared as global
variables.

VOS_HANDLE hUsb,
hBOVS,
hFAT,

hGpi o;

Main Function

The main function is the entry point each time the application is run. Within this routine are most of
the initialization routines which are run before starting the application threads.

To begin, declare a context for the USB Host and GPIO drivers, the context is used later to configure
the device before opening it.

voi d mai n(voi d)

{

usbhost _context_t usb_ctx;
gpi o_context _t gpi oCtx;

Next, initialize the Kernel for the number of devices being used, the time slice for each thread
(Quantum) and the interval for timer interrupts (tick). The NUMBER_OF_DEVICES comes from the
header file where it was explicitly set to 3; when writing a system that requires more devices it is
important to remember to increase this number otherwise any extra devices are not registered with
the Kernel and Device Manager. The default clock frequency for the CPU is 48MHz;this has been
added for completeness.

vos_i ni t (VOS_QUANTUM VOS_TI CK_|I NTERVAL, NUMBER OF_DEVI CES) ;
vos_set _cl ock_frequency(VOS_48VHZ_CLOCK_FREQUENCY) ;

VNC2 features several peripherals, however it is not possible to route all of these signals
concurrently. To allow signals to be routed to their required pins VNC2 comes with an 1/0 Multiplexer
(I0OMux) which provides a simple API to allow signals to be routed to specific pins. FTDI provides an
I0Mux configuration utility as part of the installation, giving a visual representation of the pins to aid
with routing signals. The utility will generate C code that can be cut-n-paste straight into any
application.

The IOMux code used to routed to connect to a V2EVAL board allows routing to 64, 48 or 32 pin
devices. The code here is edited for clarity, refer to Getting Started Code Listing for the full listing.

Copyright © 2012 Future Technology Devices International Ltd. 30

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

if (vos_get_package_type() == VINCULUM || _64_PIN)

{

/'l GPIO port Abit 1 to pin 12

vos_i onux_defi ne_out put (12, | OMUX_OUT_GPI O PORT_A_1); //LED3

vos_i omux_define_i nput (42, 1 OMUX_I N_UART_CTS_N); //UART CTS#
}

el se if (vos_get_package_type() == VINCULUM || _48_PIN)

{

/1 GPIO port Abit 1 to pin 12

vos_i onux_defi ne_out put (12, | OMUX_OUT_GPI O PORT_A_1); //LED3

vos_i onux_define_i nput (34,1 OMUX_I N_UART_CTS_N); //UART CTS#
}

else // VINCULUM II_32_PIN

{

/1 GPIO port Abit 1 to pin 12

vos_i onux_defi ne_out put (12, | OMUX_OUT_GPI O PORT_A_1); //LED3

vos_i onux_define_i nput (26,1 OMUX_I N_UART_CTS_N); //UART CTS#
}

Next, configure devices and open a handle to each of these devices. VNC2 has two USB Host
interfaces available. HelloWorld configures the second USB Host to connect to the flash drive. Within
the usbhost_context_t, declare the maximum number of interfaces to be enumerated. When calling
the usbhost init() function, specify the device number to register with Device Manager. In this
example it is only necessary to register the second USB Host interface. Therefore pass -1 as the first
parameter and the device number for our USB Host (from the header file) as the second parameter.
The third parameter is USB host context.

/'l Initialize the USBHost driver and open a handle to the device...
usb_ctx.if_count = 4; // Use a max of 4 USB interfaces
usbhost _init (-1, VOS_DEV_USB_HOST, &usb_ctx);

To initialize the GPIO, the port number to be used (A,B,C,D or E) is passed with the device context
when calling the gpio_init() function. This is illustrated as follows:

/1l Initialize the GPIO driver and open a handle to the device...
gpi oCt x. port _identifier = GPI O_PORT_A,
gpi o_i nit(VOS_DEV_GPI O, &gpi oCt x) ;

The BOMS Driver and FAT File System Driver are simpler to call and do not require a context to
initialize the device, again they pass the device number to Device Manager to register the driver
when boms _init() and fatdrv_init() are called.

/'l Initialize the BOMS driver and open a handle to the device...
boms_i ni t (VOS_DEV_BOMS) ;
fatdrv_init(VOS_DEV_FAT);

All user application threads must be declared within the main routine. When creating a thread, use
vos create thread() and pass a pointer to the thread function. In this example a forward
declaration for a thread called firmware was created in the header file and this is the name that is
passed into vos create thread().

The first parameter in vos create thread() is the thread priority; this value determines the priority of
the thread in relation to other application threads. The thread priority must be a value between 1
and 31 with 1 being the lowest priority thread.

The SIZEOF_FIRMWARE_TASK_MEMORY, as defined within the header file, is the amount of stack
usage that is allocated to the application thread. The stack size required for a thread depends on its
complexity, for this application a stack size of 0x1000 will be more than adequate.

The last parameter is the arg size field; vos create thread() allows for any number of extra
parameters to be passed into the function. The arg size field must reflect the total size of the
arguments passed into the function. In this example the thread has no arguments and therefore arg
size is zero.

/'l Create our application thread here...
vos_create_thread(29, SIZEOF_FI RWMARE_TASK_MEMORY, firmware, 0);

Copyright © 2012 Future Technology Devices International Ltd. 31

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The last step within the main routine is to call the Kernel Scheduler to start the application threads.
The call to vos start scheduler() is an indication that setup and initialization is finished, and control
passes from main to the application threads.

// Start the scheduler to kick off our thread...
vos_start_schedul er();

Application Thread

This is the body of the application and contains firmware code to control the VNC2. To start, declare
the thread function and local variables

void firnmware(void)

{

unsigned char *tx_buf = "Hello World! \r\n";
unsi gned char connectstate;

unsi gned char status;

/1 USB host vari abl es

usbhost _devi ce_handl e *i f Dev;

usbhost _ioctl _cb_t hc_ioch;

usbhost _ioctl _cb_class_t hc_iocb_cl ass;
/1 BOMS device variables

msi _ioctl _cb_t bons_ioch;

boms_i octl _cb_attach_t bons_att;

/'l FAT file system variabl es

fat _ioctl _cb_t fat_ioctl;

fatdrv_ioctl _cb_attach_t fat_att;

FILE *file;

/1 GPIO variables

gpi o_ioctl_cbh_t gpio_ioch;

unsi gned char | eds;

Firstly open the USB Host controller driver. The function vos_dev_open() requires the device number
of the USB host driver and returns a handle to the instance of the driver.

hUsb = vos_dev_open(VOS_DEV_USB_HOST) ;

Next, configure the GPIO driver so that all signals are set to output, this enables feedback to be
shown through the LEDs. Control requests to drivers are performed through 1/0 control calls where
the call to be performed is specified and any extra data required by the call is passed in.

hGpi o = vos_dev_open(VOS_DEV_GPI O) ;

gpi o_i och.ioctl_code = VOS_|I OCTL_GPI O_SET_MASK;
gpi o_i ocb.value = Oxff; // set all as output
vos_dev_ioctl (hGpi o, &gpio_ioch);

To determine whether there is a USB device connected to USB Host 2, use the
VOS_I0CTL_USBHOST_GET_CONNECT_STATE IOCTL function. When a device is detected, information
is relayed back to the user via the LEDs.

do
{
//wait for enuneration to conplete
hc_i ocb.ioctl_code = VOS_| OCTL_USBHOST_GET_CONNECT_STATE;
hc_i och. get = &connect st at e;
vos_dev_ioctl (hUsb, &hc_ioch);
if (connectstate == PORT_STATE_ENUMERATED)
{
/1 connected to USB device and enunerated
| eds = OxAA; vos_dev_write(hGpio, & eds, 1, NULL);

Now, use the VOS_IOCTL_USBHOST DEVICE_FIND_HANDLE_BY CLASS IOCTL to determine if the
connected device is a BOMS class device. The class, subclass and protocol of the device must also be
passed to this IOCTL. If the driver finds a device matching the BOMS flash disk then a handle is
returned in the get section of the IOCTL block.

/1 find BOMS cl ass device
hc_iocb_cl ass. dev_cl ass = USB_CLASS_MASS_STORAGE;

Copyright © 2012 Future Technology Devices International Ltd. 32

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide

Clearance No.: FTDI# xxx

Chip AN_151 User Manual Version 2.0.0

hc_iocb_cl ass. dev_subcl ass = USB_SUBCLASS MASS STORAGE_SCSI ;
hc_iocb_cl ass. dev_protocol = USB_PROTOCOL_ MASS_ STORAGE_BOMS;
// user ioctl to find first hub device
hc_i ocb.ioctl_code = VOS_| OCTL_USBHOST_DEVI CE_FI ND_HANDLE_BY_CLASS;
hc_i ocb. handl e. di f = NULL;
hc_ioch.set = &hc_iocb_cl ass;
hc_i och. get = & fDev;
vos_dev_i octl (hUsb, &hc_iochb);
if(!ifDev)
{
/1 We didn't manage to find a device matching the required cl ass.
br eak;

}

Using the ifDev handle as received from the previous IOCTL, attach the BOMS driver to the flash disc

using the BOMS MSI IOCTL BOMS ATTACH IOCTL.
hBoms = vos_dev_open(VOS_DEV_BOMS) ;

/1 Attach BOMS driver to our USB Flash Di sk
bons_att. hc_handl e = hUsb;

bons_att.ifDev = ifDev;

boms_i ocb.ioctl _code = MSI _| OCTL_BOMS_ATTACH,;
bonms_i ocb. set = &bons_att;

boms_i ocb. get = NULL;

status = vos_dev_ioctl (hBonms, &boms_ioch);

The FAT driver is required to match the file structure on BOMS devices and allow reading and writing

of files. Calling the FAT IOCTL FS ATTACH will cause subsequent file system operations to be sent

to the BOMS disk.
hFat = vos_dev_open(VOS_DEV_FAT);
/1 Attach the FAT driver to the BOMS device
fat_ioctl.ioctl_code = FAT_I OCTL_FS_ATTACH;
fat_ioctl.set = &fat_att;
fat_att.bonms_handl e = hBons;

fat_att.partition = 0;
status = vos_dev_ioctl (hFAT, &fat _ioctl);

Once the FAT file system and BOMS are attached then the stdio library can be initialised with the
fsAttach function.
fsAttach(hFAT);

The stdio library can now be used to access files on the disk.

Notice the use of the strlen function as defined within the string runtime library to calculate the
length of the Hello World buffer.

file = fopen("TEST. TXT", "a+");
fwrite(tx_buf, strlen(tx_buf), sizeof(char), file);
fclose(file);

Follow the instructions in Building Your First Application to build the project and flash the VNC2.
2.6 Code Listing

HelloWorld.h

/*
** Hell oWworld. h

* %

** Copyright © 2010 Future Devices International Limted
* %

** C Header file for Vinculum Il sanple application

** Main nodul e

* %

** Aut hor: FTDI

Copyright © 2012 Future Technology Devices International Ltd.

33

Chip

FTDI Document Reference No.: FT_000289

Vinculum Il User Guide
AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

** Project: VinculumllI

** Modul e: Vinculum || Sanple Applications

** Requires: VOS BOMS FAT USBHost GPI O STDI O

** Comments: Uses stdio to wite files on flash disk

* %

** History:
** 1 — Initial version

* %

*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

S| ZEOF_FI RWAARE_TASK_MEMORY 0x1000
NUMBER_OF DEVI CES 4
VOS_DEV_USB_HOST 0

VOS_DEV_BOMS 1

VOS_DEV_FAT 2

VOS_DEV_GPI O 3

LEDO 0x02

LED1 0x04

LED2 0x20

LED3 0x40

HelloWorld.c

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

Hel l oWorl d. c

Copyright © 2010 Future Devices International Limted

C Source file for Vinculum |l sanple application
Mai n nodul e

Aut hor: FTDI

Project: Vinculum I

Modul e: Vinculum || Sanple Applications

Requires: VOS BOMS FAT UART USBHost GPI O STDI O
Comments: Uses stdio to wite files on flash disk

** History:
** 1 — Initial version
* %
*/
#i ncl ude "vos. h"
#i ncl ude " USBHost. h"
#i ncl ude "USB. h"
#i ncl ude "Msl. h"
#i ncl ude "BOMS. h"
#i ncl ude "FAT. h"
#i ncl ude "GPI O. h"
#include "stdio.h"
#i nclude "string. h"
#i ncl ude "Hell oWorl d. h"
VOS_HANDLE hUsb,
hBons,
hGpi o,
hFAT;
vos_tch_t *t cbFi r myvar e;
char *tx_buf = "Hello World! \n";

Copyright © 2012 Future Technology Devices International Ltd. 34

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

void firmware(void);

voi d mai n(voi d)
{
/1 USB Host configuration context
usbhost _context _t usb_ctx;
/'l GPI O configuration context
gpi o_cont ext _t gpi oCt x;

vos_init (10, VOS_TI CK_I NTERVAL, NUMBER OF_DEVI CES);
vos_set _cl ock_frequency(VOS_48VHZ_CLOCK_FREQUENCY) ;

if (vos_get_package_type() == VINCULUM || _64_PIN)

{
/1 GPIO port Abit 1 to pin 12
vos_i onux_defi ne_out put (12, | OMUX_OUT_GPI O PORT_A_1); //LED3
/'l GPIO port A bit 2 to pin 13
vos_i onux_defi ne_out put (13, | OMUX_OUT_GPI O PORT_A_2); //LED4
/1 GPIO port Abit 5to pin 29
vos_i onux_defi ne_out put (29, | OMUX_OUT_GPI O PORT_A_5); //LED5
/'l GPIO port A bit 6 to pin 31
vos_i onux_defi ne_out put (31, | OMUX_OUT_GPI O_PORT_A_6); //LED6
/1 UART to V2EVAL board pins
vos_i onux_defi ne_out put (39, | OMUX_OUT_UART_TXD); //UART Tx
vos_i onux_define_i nput (40, 1| OMUX_I N_UART_RXD); //UART Rx
vos_i onux_defi ne_out put (41, | OWX_OUT_UART_RTS_N); //UART RTS#
vos_i onux_define_i nput (42,1 OMUX_I N_UART_CTS_N); //UART CTS#
}
else if (vos_get_package_type() == VINCULUM |1 _48 PIN)
{
/1 GPIO port Abit 1 to pin 12
vos_i onux_defi ne_out put (12, | OMUX_OUT_GPI O PORT_A_1); //LED3
/'l GPIO port A bit 2 to pin 13
vos_i onux_defi ne_out put (13, | OMUX_OUT_GPI O PORT_A_2); //LED4
/1 GPIO port A bit 4 to pin 45
vos_i onux_defi ne_out put (45, 1| OMUX_OUT_GPI O PORT_A_4); // LED6
/'l GPIO port A bit 5to pin 46
vos_i onux_defi ne_out put (46, | OMUX_OUT_GPI O_PORT_A_5); //LED5
/1 UART to V2EVAL board pins
vos_i onux_defi ne_out put (31, | OMUX_OUT_UART_TXD); //UART Tx
vos_i onux_define_i nput (32,1 OMUX_I N_UART_RXD); //UART Rx
vos_i onux_defi ne_out put (33, | OWUX_OUT_UART_RTS_N); //UART RTS#
vos_i onux_define_i nput (34,1 OMUX_I N_UART_CTS_N); //UART CTS#
}
else // VINCULUM II _32_PIN
{
/1 GPIO port Abit 1 to pin 12
vos_i onux_defi ne_out put (12, | OMUX_OUT_GPI O PORT_A_1); //LED3
/1 GPIO port A bit 2 to pin 14
vos_i onux_defi ne_out put (14, | OMUX_OUT_GPI O PORT_A_2); //LED4
/1 UART to V2EVAL board pins
vos_i onux_defi ne_out put (23, | OMUX_OUT_UART_TXD); //UART Tx
vos_i onux_defi ne_i nput (24,1 OMUX_I N_UART_RXD); //UART Rx
vos_i onux_defi ne_out put (25, | OWX_OUT_UART_RTS_N); //UART RTS#
vos_i onux_define_i nput (26,1 OMUX_I N_UART_CTS_N); //UART CTS#
}

/'l use a max of 4 USB devices
usb_ctx.if_count = 4;
usbhost _init(-1, VOS_DEV_USB HOST, &usb_ctx);

boms_i ni t (VOS_DEV_BOMS) ;
fatdrv_init(VOS_DEV_FAT);

gpi oCt x. port _identifier = GPI O_PORT_A;

Copyright © 2012 Future Technology Devices International Ltd. 35

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

gpi o_init(VOS_DEV_GPI O &gpi oCt x) ;
tcbFirmvare = vos_create_t hread(29, SIZEOF_FI RMAMARE_TASK_MEMORY, firnmware, 0);
vos_start_schedul er();

mai n_| oop:
goto mai n_| oop;

}

void firnmware(void)

{
unsi gned char connectstate;
unsi gned char status;

usbhost _devi ce_handl e *if Dev;
usbhost _ioctl _cb_t hc_ioch;
usbhost _ioctl _cb_class_t hc_iocb_class;

nmei _ioctl _cb_t bons_iocb;
boms_ioctl _cb_attach_t bonms_att;

fat_ioctl _cb_t fat_ioctl;
fatdrv_ioctl _cb_attach_t fat_att;

gpio_ioctl _cb_t gpio_ioch;
unsi gned char | eds;

FILE *file;

/1 open host controller
hUsb = vos_dev_open(VOS_DEV_USB_HOST) ;

/1 open GPI O device
hGpi o = vos_dev_open(VOS_DEV_GPI O ;

gpi o_i ocb.ioctl _code = VOS_| OCTL_GPI O_SET_MASK;
gpi o_i ocb. val ue = Oxff; /'l set all as output
vos_dev_ioctl (hGpi o, &gpio_ioch);

do
{
//wait for enuneration to conplete
vos_del ay_nsecs(250);
|l eds = LEDO; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_nsecs(250);
leds = 0; vos_dev_write(hGpio, & eds, 1, NULL);

/'l user ioctl to see if bus avail able

hc_iocb.ioctl_code = VOS_| OCTL_USBHOST_GET_CONNECT_STATE;
hc_i och. get = &connect st at e;

vos_dev_ioctl (hUsb, &hc_ioch);

if (connectstate == PORT_STATE_ENUMERATED)

{
| eds = LED1l; vos_dev_write(hGpio, & eds, 1, NULL);

/'l find and connect a BOMS device

/1 USBHost ioctl to find first BOMS device on host
hc_iocb.ioctl_code = VOS_| OCTL_USBHOST_DEVI CE_FI ND_HANDLE_BY_CLASS;
hc_i ocb. handl e. di f = NULL;

hc_i ocb. set = &hc_iocb_cl ass;

hc_i ocb. get = &i fDev;

hc_iocb_cl ass. dev_class = USB_CLASS_ MASS_STORAGE;

hc_i ocb_cl ass. dev_subcl ass = USB_SUBCLASS MASS_ STORAGE_SCSI ;

Copyright © 2012 Future Technology Devices International Ltd. 36

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

hc_iocb_cl ass. dev_protocol = USB_PROTOCOL_ MASS STORAGE_BOMVS;

if (vos_dev_ioctl (hUsb, &hc_iocb) != USBHOST_OK)

{
| eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_nsecs(1000);
br eak;

}

// now we have a device, intialise a BOMS driver for it
hBons = vos_dev_open(VOS_DEV_BOMWS) ;

/1 BOMS ioctl to attach BOMS driver to device on host
boms_i ocb.ioctl _code = MSI _| OCTL_BOVS_ATTACH,

bonms_i ocb. set = &bons_att;

boms_i ocb. get = NULL;

boms_att. hc_handl e = hUsb;

bonms_att.ifDev = ifDev;

status = vos_dev_ioctl (hBonms, &bons_ioch);
if (status != MSI_OK)

{
|l eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_msecs(1000);
br eak;

}

/1 now we have the BOMS connected open the FAT driver
hFAT = vos_dev_open(VOS_DEV_FAT);

fat_ioctl.ioctl_code = FAT_I OCTL_FS_ATTACH;
fat _ioctl.set = &fat_att;

fat _att. bons_handl e = hBons;
fat_att.partition = 0;

status = vos_dev_ioctl (hFAT, &fat_ioctl);
if (status != FAT_OK)

{
| eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_mnmsecs(1000);
br eak;

}

/1l lastly attach the stdio file systemto the FAT file system
fsAtt ach(hFAT);

/'l now call the stdio runtime functions
file = fopen("TEST. TXT", "a+");

if (file == NULL)

{
| eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_nsecs(1000);
br eak;
}
if (fwite(tx_buf, strlen(tx_buf), sizeof(char), file) == -1)
{
|l eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_mnmsecs(1000);
}
if (fclose(file) == -1)
{
| eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_nsecs(1000);
}

Copyright © 2012 Future Technology Devices International Ltd. 37

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

|l eds = LEDl; vos_dev_write(hGpio, & eds, 1, NULL);

fat _ioctl.ioctl_code = FAT_I OCTL_FS_DETACH;

if (vos_dev_ioctl (hFAT, &fat_ioctl) !'= FAT_OK)

{
|l eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_msecs(1000);
br eak;

}

vos_dev_cl ose(hFAT);

boms_i ocb.ioctl _code = MSI _| OCTL_BOMS_DETACH,

if (vos_dev_ioctl (hBons, &bons_ioch) != MSI_OK)

{
| eds = LED3; vos_dev_write(hGpio, & eds, 1, NULL);
vos_del ay_nsecs(1000);
br eak;

}

vos_dev_cl ose(hBons);
leds = 0; vos_dev_write(hGpio, & eds, 1, NULL);

vos_del ay_mnsecs(5000);

}

} while (1);

Copyright © 2012 Future Technology Devices International Ltd. 38

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3 Toolchain

FTDI has created set of tools for Vinculum Il (VNC2) which includes a C compiler, assembler, linker,
debugger and integrated development environment.

These tools facilitate application development on VNC2 using a kernel, device driver and runtime
libraries provided by FTDI.

YinL

Firmw Tool chain -

ving | -

Lib / | VinAsm

= - I I
e ' —
Source Files = ity VinDby Yinculum Il

> — . - Chip
-k ~ MinlDE

All tools are command line applications and as such can be integrated into third party applications
such as IDEs or scripts.

3.1 Toolchain Basics

The toolchain is designed to integrate with the firmware (RTOS, drivers and libraries) supplied by
FTDI.

Addresses for ROM and RAM are handled differently:

o All ROM addresses are specified in word addresses as this is the size of data which is stored in the
Flash ROM.

o All memory addresses are specified as byte addresses.

3.2 VinC Compiler

VinC Compiler, implemented as part of the overall Toolchain, for the VNC2 is:
e ANSI 'C' compatible (with restrictions)

e Support for structures, unions and arrays - Structures and arrays can be comprised of base data
types or other data structures

e Language level support for accessing flash memory

e Support for pointers including function pointers. There are some restrictions on using pointers to
data stored in ROM.

e Support for typedef

e Support for ANSI C control flow statements, selection statements and operations
e Support for inline assembly

o Efficient RAM usage and optimisations

e Separate preprocessor (VinCpp.exe)

e Produces optimized code for VNC2

Copyright © 2012 Future Technology Devices International Ltd. 39

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.2.1 Compiler Command Line Options

VinC allows the user control various stages of compiling with the help of command line options. In
addition, VinC also acts as a driver for other tools in the Toolchain and allows it to be controlled with
additional command line options. The following command line options are supported in the VinC
Compiler:

VinC [options] [file ...] [-L linker options]
Option Description
-E Run the preprocessor and stop.
-S Stop processing after preprocessing and compilation.
-C Preprocess, compile and assemble but do not invoke linker.
-0 |l evel Specify optimisation for compiler.
-d level Specify debug information level for compiler.
-D macro=defn Defines macro with optional defn in preprocessor.
-U macro Undefines macro in preprocessor.
-1 dir Add a search directory for include files.
-o file Specify output filename.
-1 file Specify log filename.
--save-tenps Save all temporary files.
--save-tenp Save temporary files: 'a' assembler, 'i' preprocessor,'o’ object.
- - combi ne Combine source files on command line into single input file for
compiling.
--library Create a single output file for all source files on command line.
-V Verbose output of command lines for tools.
-q Quieten output of command lines for tools.
--version Display tool version.
--all-versions Display all tool versions.
--max-warn limt Limit the number of warnings displayed.
--max-err limt Limit the number of errors displayed.
--help Display this help message.
-L Process all following options as linker options.

3.2.1.1 Compiler File Type

The compiler can control the 4 stages of compilation: Preprocessing, compilation, assembling and
linking. The type of file passed to the compiler and the compiler command parameters determine
which stages are performed.

The following file extensions are used for specifying the start stage of compilation:

file.c An unpreprocessed C source file which will be preprocessed prior to compilation
file.i A preprocessed C source file which will be compiled, assembled and linked.
fle.asm An assembler file to be assembled and linked.

file.obj An object file to be sent to the linker

3.2.1.2 Compile Stage Selection

It is possible to specify which stage to stop to the compiler. These flags can stop after
preprocessing, compilation, assembling or allow linking to complete.

Copyright © 2012 Future Technology Devices International Ltd. 40

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

-E

--pp
Run the preprocessor and stop. Any unpreprocessed C source files will be preprocessed
and given a ".i' extension.

-S

- - ppx
Stop processing after preprocessing and compilation. Any source files will be compiled to a
assembly file and given a '.asm' extension.

-c

--ppca

Preprocess, compile and assemble but do not invoke linker. Source files will be compiled or
assembled to an object file and given a ".obj' extension.

3.2.1.3 Compiler Output
The following options control the type of output of compiler.

-0

--output file
Specifies the output file name for the last stage of compilation performed. If this option is
set then there can only be one input file specified on the command line. The output file
name also overrides any file extension that may be given to a particular output file. The
default action is to use the filename of the input file and modify the file extension for the
output file.

--library
Combine all source files at the compile stage into a single assembler file. This cannot be
used in conjunction with C source files and assembler or object files. The global namespace
in each C source file is kept separate.

--conbi ne
Similar to --library except that the global namespaces of C source files are combined.

-T

--save-tenps
Keeps all intermediate files during the compilation. All preprocessed C source files,
assembler files and object files are retained, usually only the file produced for the final
stage of compilation is retained.

-t opt

--save-tenp opt
Keeps selected intermediate files depending on the opt parameter. 'a’' to keep assembler
files, 'i' for preprocessor files and ‘o' for object files. Multiple options can be combined, for
instance, "--save-temp ao" to retain both assembler and object files.

- q .

--qui et
Reduces the output of the compiler to a minimum. Only a final status message and error
messages will be displayed.

-V

--verbose

Displays the more information during compilation.

-1 file
--log file
Copy preprocessor, compiler, assembler and linker output to a log file.

3.2.1.4 Compiler Information Options
-V
--version
Displays the version of the compiler.

--all-versions
Displays the version of preprocessor, compiler, assembler and linker. No further action is
taken (all other command line options ignored).

-h

--help

Copyright © 2012 Future Technology Devices International Ltd. 41

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Shows a summary of command options. No further action is taken (all other command line
options ignored).

3.2.1.5 Compile Time Options

The behaviour of the compiler stage is governed by the following options.

-O |l evel
--optimse |evel
Select the level of optimisation for the compiler. The level is defined as:

O - No optimisation

1 - Register allocation only

2 - Register allocation and some intermediate code optimisations

3 - Register allocation and full intermediate code optimisations

4 - Register allocation, intermediate code and peephole optimisations

-d | evel

--debug | evel
Specify whether debug information is generated by the compiler in the assembler output.
Available options are:

0 - No debug information
1 - Generate debug information
By default this is set to zero.

If an optimisation level is not specified then the default the optimisation level is set according to
the debug level. If debugging is turned off then optimisation is set to zero (for no optimisation); if it
is set to on, then the optimisation level is set to 4 for full optimisation.

3.2.1.6 Preprocessing Options
Preprocessor options can be specified on the command line for the compiler.

- D macr o[=def n]
--define macro[=defn]
Predefine macros with an optional definition.

-U macr o[=def n]
--undef macr o[=def n]
Remove definition of a macro.
-1 odir
--include dir
Add a directory to the include directory search path.

3.2.1.7 Linker Options

There are many options which affect the linker operation. These can be specified on the compiler
command line.

-L opts...

--linker opts...
When this option is encountered on the compiler command line ALL further options are
passed directly to the linker and are not processed by the compiler.

3.2.2 Data Types

Compiler supports the C language standard integral data types (char, short, long, int and void) and
an additional data type (port) which is used to access 1I/0 ports directly.

Data Type Name Size in Bits

char 8

short 16
long 32
int 32

Copyright © 2012 Future Technology Devices International Ltd. 42

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

void

port 8

NOTE: There is no support for floating point types.

To generate optimum code the char data type should be used as much as possible. Long and int
should only ever be used when 32-bit values are required.

A declaration of an identifier is made up of a type definition followed by an identifier. A type definition
must contain a type specifier. It may also contain any valid combination of type qualifiers and a
storage class specifier.

3.2.2.1 Type Qualifiers
Data types can be qualified with the keywords signed or unsigned, const and volatile. All datatypes
except port can be specified as rom.

signed and unsigned

These determine if the data type can be used for signed calculations. If it is signed then one data
storage bit is used for a sign bit. By default all data types except port will be signed unless

otherwise qualified.

NOTE: unsigned data types will produce smaller, faster code compared to signed data types.

const

A const qualifier enables type checking to ensure that its value is not modified by code in the scope
of the declaration. One of its main uses is where values may be passed to functions but not modified
by that function.

When const is used with pointers the following applies:

char val;
char * const ptr = &val; /1l ptr is a constant pointer, the value it points to can be nodified
char const * ptr = &val; /1l ptr is a normal pointer and can be modified, the value it points t

Const cannot be used before and after the pointer operator in the same declaration.

volatile

The volatile qualifier tells the compiler to not re-use the value of a data type during a calculation. It
always reads a fresh value of the data each time it is required in a calculation. It is used mainly
where a value may change outside the linear program flow (e.g. by an interrupt or thread).

When volatile is used with pointers the following applies:

char val;
char * volatile ptr = &val; /[l ptr is a volatile pointer, the value it points to is not
char volatile * ptr = &val; /'l ptr is a normal non-volatile pointer, the value it points to is

Volatile cannot be used before and after the pointer operator in the same declaration.

rom

When a storage type is qualified with rom then the data to be stored must be initialised.
Non-pointer variables may be used transparently in code but special rules apply for pointers.

If the type is a pointer then a pointer to data stored in ROM is created. For arrays and strings the
compiler will store the initialisation data in the code section and a rom pointer will be generated to
point to the data. All access must be via the rom pointer. A rom pointer cannot be modified so all
access to the data must be made through the offset operators [].

romchar x[] ={ 1,2,3,4,5};
romint y[10] = { 1,2,3,4,5,2,3,4,5,6};
rom char *str = "Hello";

romint buffersize = 20;

Copyright © 2012 Future Technology Devices International Ltd. 43

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

All initialisation data must be constant values or string literals. rom is not applicable to function
definitions, declarations or parameters. See the topic ROM Access for example code.

3.2.2.2 Storage Type Specifiers
The data storage type defines where and how data is stored.
Locals Globals

auto scope of the global scope
function
destroyed
when scope left

static scope of the file scope only
function
preserved
between calls
to scope

externnot allowed link to global scope

typed not allowed new data type defined with file scope
ef

The default is auto, except for function declarations whose storage class is extern.
3.2.2.3 Type Specifiers

char

Bit Size Signed Range (decimal) Unsigned Range (decimal)
8 -128 to 127 0 to 255

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed
Supported Storage auto, static, extern, typedef
Type:
Remarks: This is the basic 8-bit data type for storage and stores a single byte of data.
Example:
char x = 4; /'l sinple char variable

unsi gned char * const y; // pointer to a constant char val ue
short

Bit Size Signed Range (decimal) Unsigned Range (decimal)
16 -32768 to 32767 0 to 65535

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed

Supported Storage auto, static, extern, typedef

Type:

Remarks: This is a short integer data type and stores a single word or two bytes of
data.

long, int

Copyright © 2012 Future Technology Devices International Ltd. 44

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Bit Size Signed Range (decimal) Unsigned Range (decimal)

32 -2147483648 to 0 to 4294967295
2147483647

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed

Supported Storage auto, static, extern, typedef

Type:

Remarks: This is a long integer data type and stores two words or four bytes of data.

This is the default type specifier used if it is not explicitly specified.
void

Bit Size Signed Range (decimal) Unsigned Range (decimal)
0 N/A N/A

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed

Supported Storage auto, static, extern, typedef

Type:

Remarks: void is a special data type that does not hold any data. Only a pointer to

void (interpreted as a pointer to anything) can be used to declare identifiers.
Another use is to mark cases where no data is to be transferred or when a
pointer is to an unspecified data type.

Example:

void *p = &X; /1 pointer to an unknown data type

voi d mai n(void) /1 function with no parameters and returning no data
port

Bit Size Signed Range (decimal) Unsigned Range (decimal)
8 N/A 0 to 255

Supported Qualifiers: N/A

Default Qualifiers: unsigned, volatile

Supported Storage auto, extern

Type:

Remarks: port is a special type that allows direct access to 1/0 ports. Ports must be

initialised with an 1/0 register address when declared using the @ operator.
It is not possible to have a static or typedef port. Allowable 1/0 address
range is O to 512 (Ox0 to Ox1ff).

Examples:

port interrupt_reg@O00; // define interrupt register at |/O address 200
interrupt_reg = 4; /1 clear interrupt register bit

struct and union

struct format:struct <structure identifier (optional)> {

<type definition> <member name identifier>(:<bit range=>);

Copyright © 2012 Future Technology Devices International Ltd. 45

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

} <structure variable (optional)>;

union format:union <union identifier (optional)> {

<type definition> <member name identifier>(:<bit range=>);

} <union variable (optional)>;

Remarks: Both structures and unions can be defined from either base data types (except ports),
other structures, enumerations, arrays, typedefs and pointers. The format of struct and
union is the same.

Either the variable or the identifier must be present in a declaration of a struct or
union. Both may be used to make a definition and a variable in the same declaration.

Bitfields may be specified for base data types only by using the range operator (:) after
the member name identifier. This value must be a constant value and must always
specify a size less than or equal to the size of the base type in the type definition. It
must always be padded to fill the whole size of the base data type and is never
allowed to overrun the end of the base data type.

enum
enum format:enum <enum identifier (optional)> {

<constant identifier> (= <constant value=);

} <enum variable (optional)>;

Remarks: An enumeration creates a range of identifiers with constant values which will, by
default, increment by one as the list is defined. It is also possible to specify a value for
an identifier, in this case the list will continue to increment from the specified value.

Either the variable or the identifier must be present in a declaration of an enum. Both
may be used to make a definition and a variable in the same declaration.

All variables generated with an enumeration are of type int. In the absence of a
constant value, the first enumerator is assigned the constant value zero.

typedefs

typedef typedef <type definition> <identifier>;

format:

Remarks: New types can be defined using the typedef keyword. The resulting identifier can be

used in place of the type definition.

The base data types void, char, short, long, int or valid combinations of enumerations,
structures, unions and arrays may be used in the definition of the new type. Valid
combinations of qualifiers and storage types are also allowed.

Strings

Copyright © 2012 Future Technology Devices International Ltd. 46

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

string format:"<string text=>"

Remarks: String are enclosed in double quotes. It is not allowed to interrupt string literals by
closing then reopening the double quotes during a string definition.

All non-printable ASCII characters, single quotes, double quotes, question marks and
backslashes must be represented with escape sequences in strings.

\? ASCII character ? is a decimal value of the ASCII character to use.(\O for NU
character)

\x? ASCII character ? is a hexadecimal value representing the ASCII character t

\a 0x07 Bell

\b 0x08 Backspace

\f 0x0c Form Feed

\n Ox0a Carriage Return

\r Ox0d Line Feed

\t 0x09 Horizontal Tab

\v 0x0b Vertical Tab

\' ox27 Single quote character

\" 0x22 Double quote character

\? Ox3f Question mark

\\ 0x5c¢c Backslash

Arrays

typedef <type definition> <array identifier> [<constant number of elements (optional)>] (=

format: { <constant value>=...}) ;

Remarks: An array is used to hold multiple data types in a contiguous sequence. The data types
may be any of the base data types (except port), structures, enumerations, other
arrays, typedefs and pointers.

The number of elements must be specified or it must be initialised with data to reserve
storage. If it is not specified or initialised then it will be assumed to be a pointer. If the
number of elements is not specified but the array is initialised then the number of
initialisation data elements is used as number of elements in the array.

The number of elements in the array must be a constant value. Likewise, the
initialisation data must be constant values too.

Pointers

typedef <type defintion> * <identifier> (= <constant value);

format:

Remarks: A pointer is a variable that holds the memory address of something. It can be a pointer

to any of the base data types (except port), structures, enumerations, arrays, typedefs
and other pointers. The * symbol is used to form a pointer in the type definition.

Copyright © 2012 Future Technology Devices International Ltd. 47

Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

Pointers to other identifiers or functions are allowed.

Examples:

void * ptr; // pointer to a void (pointer to anything)

i nt

*fn(int); // pointer to a function returning int and taking a single int as a paraneter

Constants

Comments: A constant can be written as a decimal, octal or hexadecimal value, and have an

optional unsigned specified.

Constant decimals, other than zero, are not prefixed by any characters. They may have
a capital 'U* postfixed to the value to indicate that it is unsigned.

Octal numbers are prefixed by a zero ('0') character. Octals may not be signed

Hexadecimal values are always unsigned and are prefixed by the characters "0x" or
"OX".

Binary numbers are prefixed by the characters "0b" or "0OB".

Character constants are represented by a single character in single quotes. The
escape sequences used for strings apply to character constants.

Constants may also have a capital ‘L' appended to indicate that they are to be treated
as a long integer. A non-zero decimal number may not be prefixed with a zero ('0")
character or it will be interpreted as an octal value.

Examples:
int x = 0765; /1 octal constant
int g = Oxaaaaaaaa; // hexadeci mal constant

signed char z = 254U; // set a signed value with the equivel ant unsigned val ue

i nt

w = 0; /'l zero

3.2.2.4 Data Conversion References

Data is converted between different variable sizes in expressions according to the following rules.
The left column is the data size on the left side of an expression, right is the data size on the right.

Left
char
char
char
short
short

short

Right Result Bits affected

char OK

short Type mismatch Right 8 to 16 lost
int or long Type mismatch Right 8 to 32 lost
char OK

short OK

int or long Type mismatch Right 16 to 32 lost

In a assignment expression, when the left and right operand of data type is char

Example

char
char

cVar 1,
cVar 2;

cvarl = cvar?2 ;

Copyright © 2012 Future Technology Devices International Ltd. 48

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

In the assignment expression, when the left operand of type is char and right operand of type is
short

Example

char cVarl;
short sVar2;
cVarl = sVar2 ; //Warning type m smatch

In the assignment expression, when the left operand of type is char and right operand of type is
integer

Example

char cVvar1i,
int iVar2;
cVarl = iVar2 ; //Warning type m smatch

In the assignment expression, when the left operand of type is short and right operand of type is
character

Example

short sVarl;
char cVar2;
sVarl = cVvar2 ;

In the assignment expression, when the left operand of type is short and right operand of type is
short

Example

short sVarl;
short sVar2;
sVarl = sVar2 ;

In the assignment expression, when the left operand of type is short and right operand of type is
long

Example

short sVar1,;
I ong | Var 2;
sVarl = IVar2 ; //warning type m snmatch

3.2.3 Special VNC2 Reference

VinC has defined calling convention in order for assembler functions to be called from C and vice
versa. It also defines the Port data type as a special types to allow direct access to 1/0 ports. it also
defines the global variables are placed in DATA segment and local variable allocated in stack.

3.2.3.1 ANSI C Feature Support Summary
VinC is a compiler that supports following features from ANSI C.
1.Data types

a.Basic Data Types

b.Arrays

c. Structures

d.Unions

Copyright © 2012 Future Technology Devices International Ltd. 49

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

e.Pointers
2.0perations
a.Precedence and Order of Evaluation
b.Arithmetic Conversions
c. Postfix Operators
d.C Unary Operators
e.Cast Operators
f. Multiplicative Operators
g.C Additive Operators
h.Bitwise Shift Operators

. Relational and Equality Operators

. C Bitwise Operators

x -

.Logical Operators
I. Conditional-Expression Operator
m.Assignment Operators
n.Sequential-Evaluation Operator
0.Side effects

3.Control flow
a.for loop
b.while loop
c. do-while loop
d.Label and Jump statements
e.return,
f. break, continue,
g.switch

4.0ther Statements
a.Function calls
b.Compound statements
c. Expression and null statements
d.Selection statements (if-then-else, switch-case)

e.Conditional

3.2.3.2 C Language Restrictions

VinC has added some specific restrictions on C language to support the VNC2 architecture, these
restrictions are:

e Cascading typecast are not supported
e Function pointer definitions as parameters in function declaration not supported
e Vacuous definition for struct or union not supported

e Passing structures or unions as parameters to a function is not supported: Structures and unions
have to be passed as pointers

e Returning structures or unions from function calls is not supported: Returning a pointer to a
structure or union is allowed

e Floating point data type and arithmetic is not supported

e Declarations must have a type specifier, a type qualifier is not sufficient (i.e. int will not be

Copyright © 2012 Future Technology Devices International Ltd. 50

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

assumed)
e Bit ranges in structures or unions must have a type specifier (i.e. int will not be assumed)
3.2.3.3 Special Features
3.2.3.3.1 Accessing ports

Syntax:

PORT <nanme> @ <address>;
Description

VinC compiler defines Port data type as a special type to allow direct access to 1/0 ports. Port data
types must be defined and initialised with an I/0 register address when declared using the @
operator. PORT has to be defined with global scope, and the allowable 1/0 address range is 0 to 511
(0Ox0 to Ox1ff).

Example
port interrupt_reg@O0o0; /* define interrupt register at I/O address 200 */
interrupt_reg = 4; /* clear interrupt register bit */

3.2.3.3.2 Bit mapping

Syntax
<vari abl e>. <constant offset>
Description

Hardware extensions are available for bitmap operations. These can be accessed using bitmapped
operations in expressions.

Bit mapping of all data types is possible by post-fixing the bit offset constant after the variable name
with a member operator. The maximum bit offset is one less than the size of the data type, the first
bit offset is zero.

Examples

unsi gned char x = Oxaa;

if (x.3) return 1; // bit 3 set
3.2.3.3.3 ROM Access

Syntax

rom <type>,
Description

Variables, arrays and structures may be stored in ROM. The qualifier romin the declaration will switch
storage from RAM to ROM.

Rom data must be initialised at declaration time and must be in global scope.

It is not allowed to create a pointer to be used to access an array or string in ROM as rom pointers
may not be modified. Therefore all data transfers from ROM must be done as an array offset from a
rom pointer.

Examples
To read in a data array:
rom char nyarray[16] = {1,2,3,4,5,6,7,8,9,10, 11, 12,13, 14, 15, 16};

voi d readdat a(char *buff16byte)
{

for (x=0; x < 16; x++)

Copyright © 2012 Future Technology Devices International Ltd. 51

Vinculum 11 User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

{
}

buf f 16byt e[x] = myarray[x];

To copy a string from ROM to a RAM buffer:

rom char charversion[] = "Versionl";

voi d mai n(voi d)

{

int offset;
char buffer[20];
for (offset = 0; offset < 20; offset++)

{
}

if ((buffer[offset] = charversion[offset]) == 0) break;

To query the program size:

struct mystruct {int x; short q;};
rom struct mystruct nmyst[4] = {{4,2}, {5,3}, {6,4}, {7,5}};

int

{

}

cfpair(char pair)

int x;

short q;

X = myst[pair].x;

q = myst[pair].aq;

if (x >5)
return x;

return q;

3.2.3.4 Function Call

VinC has defined a calling convention in order for assembler functions to be called from C and vice
versa. As shown in the calling convention figure below, caller function pushes the parameters into
the stack(right to left). Then, space is reserved for the return value in the stack by the caller and the
function is called. Return address pushed into the stack by H/W and control is transferred to the
function called, where called function allocate the space for local variables. Then performs the
operation as defined by the function and store the return value in the appropriate place reserved for
the return value. Called function clears the space allocated for local variables and return from
function. Restoration of PC from the stack is done by H/W and the return value is obtained from the
stack by caller.

Current

SPp T
Local Var N

Local Var 1

Return addr

—: Space for

Stack Frame Return valus

Argument 1

Argument N

Frevious SP —=——

Previous Stack
Frame

Copyright © 2012 Future Technology Devices International Ltd. 52

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.2.3.4.1 Calling ASM File from C

If a C function is to be called from ASM arguments have to pushed into the stack and return address
reserved before calling the function.

SP T
Local Var N

Local Var 1

—_ Return addr

Space for
Return value

Argument N

Pravious
Stack Frame

Consider the following function in C:

unsi gned char * get_offset (uint8 arg, unsigned char *start);

{
while (arg--)
{
start = start + sizeof (int);
}
return start;
}

Following ASM code shows how above C function can be called in ASM. Note that parameters are
pushed in the order right-to-left to appear in the correct order on the stack in the C code.

PUSH16 $start ; push argument to stack

PUSH8 $arg ; push argument to stack

SP_DEC $2 ; allocate space for return val ues
CALL get _offset ; call

POP16 ret ; pop return value fromthe stack
SP_INC $3 ; to clear the argunment space

3.2.3.4.2 Calling C from ASM

If an ASM function is to be called from C, an equivalent prototype based on the calling convection is
defined and called from the C program.

For example, if following ASM function, which conforms to the calling convention, needs to be called.
A C prototype based on the calling convection is defined as:

unsi gned char * get_offset (uint8 arg, unsigned char *start);

Then the function get_offset() is called as if it is implemented in C.

get pointer to device struct
get _of fset:

SP_RD8 %eax $arg

SP_RD16 %ebx $start
get _offset_start_I oop:

CMP %eax $0

JZ get _offset_exit

DEC8 %eax $1

I NC16 %ebx $4

JUWMP get _offset_start_I| oop
get _offset_exit:

SP_WR16 %ebx $3

RTS

Copyright © 2012 Future Technology Devices International Ltd. 53

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Ret addr
Offset= 0 size = 3 Byte
Return value 16-Bit
Offset= 3 size = 2 Byte
Arg
Offset= 5 size = 1 Byte

Previous Stack Frame

3.2.3.5 Architecture Issues

The VNC2 architecture supports 8, 16 and 32 bit operations on memory addresses without registers.
Operations of all sizes involving only data stored in RAM are fast and efficient.

Loading 8, 16 and 32 bit values into memory is achieved in a single operation. Most operations can
take one immediate value of 8, 16 or 32 bit size. Using 16 and 32 bit data value will, in practice,
result in larger code though.

Signed arithmetic is fully supported by hardware. Although conversions between signed values of
differing sizes is performed in software will always generate larger and slower code than unsigned

Intermediate values in calculations are assumed to be of type unsigned integer (32 bits).
There is no floating point support in hardware.

Signed modulus operations are not supported. Any modulus operation will be performed as if both
dividend and divisor are unsigned.

3.2.3.6 Considerations of local vs global variables

Global variables are placed in fixed addresses in memory and local variables are allocated on the call
stack. The call stack moves from high memory addresses to lower memory addresses. Global
variables are allocated from low addresses working up to higher addresses in memory.

VNC2 does not have general purpose registers, hence, to optimize accesses, memory locations will
be emulated as registers. These memory locations may hold local variables temporarily and they
might not be allocated on the call stack depending on certain conditions.

3.2.3.7 String Literals

The VinC compiler will store string literals in the global RAM and they can be referenced from
anywhere in the program. For instance, a pointer to a string literal passed from a function is still valid
after the program returns to the calling function. This pointer will also be valid when passed to
another unrelated function. It is good practice to store pointers to string literals with the const
keyword to allow the compiler to detect attempts to modify the string literal. This applies to both
global and locally defined string literals.

String Literal Usage

This example demonstrates string literal usage when returning a value from a function.

const char *st0 = "global char pointer"; // Gobal string literal
const char *strptr(void);
voi d mai n(voi d)
{

const char *stl;

stl = strptr();

st1[0] = *\0"; // (error) C2101 cannot modify a const object

}

const char *strptr(void)

{

return "local char pointer"; // Local string literal

}

The situation is different for arrays. Although arrays may store strings they behave just like any
other variable. A local array is initialised when a function is called and its scope will follow that of any
other variable, even if it stores a ‘string’. It is not possible to pass a pointer to a locally defined array
back to a calling function as the storage for the array will be relinquished when the program returns

Copyright © 2012 Future Technology Devices International Ltd. 54

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

from a function.

Strings within Arrays

The initialised array will be recreated from data stored in ROM each time the array comes into scope.
The address of the array cannot therefore be guaranteed to be at the same address each time, nor
can it be expected that the data stored in the array is correct when the array goes out of scope. A
function erroneously returning an array is shown in this example:

char *strarr(void)

{
char ari1[] = "local array"; // Local array
return arl; // not allowed — storage for arl is destroyed on return from function

}

Understanding this difference in behaviour can be exploited to save RAM memory by defining certain
strings as arrays and hence storing them in ROM.

If you are using string literals locally in functions then define them as arrays "char x[] = "string";"
This is the most efficient (for RAM) way of storing strings. If the string literal is to be passed between
functions or even assigned to a global pointer in a function then it must be defined as a string literal
“char *x = “string”;”.

3.2.3.8 Sequence Points

Between consecutive sequence points an object's value can be modified only once by an expression.
The C language defines the following sequence points

- Left operand of the logical-AND operator (&&). The left operand of the logical-AND operator is
completely evaluated and all side effects complete before continuing. If the left operand evaluates to
false (0), the other operand is not evaluated.

- Left operand of the logical-OR operator (]]). The left operand of the logical-OR operator is
completely evaluated and all side effects complete before continuing. If the left operand evaluates to
true (nonzero), the other operand is not evaluated.

3.2.4 Error reference

Compiler error messages take the following form:

<filename> line <line nunmber>: (error]|warning|info) C<code> <description>

Error codes take one of the following values.

Error codes Description

0011 Preprocessing failed

0012 Assembling failed

0013 Linking failed

0900 ilnternal error

0901 floating point not implemented

0910 could not open output file

0911 no such file or directory

1000 syntax error

1001 syntax error unterminated string

1002 syntax error illegal escape sequence
1003 syntax error character operation too long
1004 syntax error asm directive not allowed
1005 syntax error preprocessor directive not allowed
1100 undeclared identifier

1101 l-value required

1103 illegal use of structure or union operation

Copyright © 2012 Future Technology Devices International Ltd. 55

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

1104 incompatible operation

1200 undefined label

1202 integral type expected

1203 too many default cases

1204 constant expression required

1205 case outside of switch

1206 default outside of switch

1207 duplicate case

1208 misplaced continue

1209 misplaced break

1210 no body or expression for conditional

1214 duplicate label

1300 storage class extern not allowed here

1301 storage class static not allowed here

1302 storage class auto not allowed here

1303 storage class port not allowed here

1304 struct or union not allowed here

1305 too many storage classes in declaration

1306 function declaration not allowed here

1307 export symbol not allowed here

1400 no storage type

1401 not an allowed type

1402 conflicting storage type qualifier

1403 too many storage type qualifiers

1404 too many types in declaration

1405 type mismatch

1407 parameter number type mismatch (error)

1408 parameter mismatch in redeclaration

1409 parameter type mismatch (warning)

1410 multiple declaration

1411 cannot use void type in an expression

2000 integer arithmetic overflow

2001 expression not constant

2002 constant out of range (error)

2003 constant out of range (warning)

2004 divide by zero

2005 initialisation make a pointer from an integer without a
cast

2006 signed modulus operations not supported

2101 cannot modify a const object

2102 cannot modify rom variable

2201 rom variable for structure member should be minimum
short datatype

2300 size of the type is unknown or zero

2301 excess elements in array initialiser

Copyright © 2012 Future Technology Devices International Ltd. 56

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

2302 array must have at least one element

2402 ointer to structure required on left side of "-=>"

2403 structure required on left side of "."

2404 structure or union cannot contain an instance of itself

2405 left of pointer or member not a struct or union

2500 address of port is not specified

2501 initialisation of port is not allowed

2601 initialisation of extern is not allowed

2700 too few parameters in call

2702 void functions may not return a value

2703 function should return a value

2704 parameter of type void not allowed

2800 invalid pointer addition

2801 copy of volatile pointer into normal pointer

2802 copy of const pointer into normal pointer

2803 illegal port access

2804 not a member of struct or union

2805 illegal use of pointer subtraction

2806 pointer subtraction

2807 illegal function pointer declaration

2808 illegal use of pointer

2809 illegal use of array

2810 non portable pointer conversion

2811 suspicious pointer conversion

2812 invalid indirection

2900 bit fields must contain at least one bit

2901 bit field exceeds boundary

2902 bit field exceeds the range

2903 illegal use of bit operation access

2950 local variable declarations exceed total memory size
Example

An error for a case statement outside a switch statement in file test.c line 45 will give the following
message.

test.c line 45: (error) Cl1205 case outside of switch
3.2.4.1 Examples for General Errors

Error Description: floating point not implemented

There is no floating point support on the VNC2 hardware. The compiler will therefore not support
float or double datatypes. Only integer datatypes are supported.

Example
float ivar; [//error floating point not inplenented
Error Description: no such file or directory

One of the source files specified in the command line or an intermediate file used by the compiler
could not be found or could not be opened. Check that the file exists.

Copyright © 2012 Future Technology Devices International Ltd. 57

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Error Description: could not open output file

An output file could not be opened for writing. Output files can either be the file named in the
command line for the final stage of compilation or an intermediate file whose filename is generated
by the compiler. The name of the file which caused the error is given in the error message.

Check to make sure that the file and directory is not read only and that the current user has
permissions to write to that file and directory. Also check that no other program has the named file
open.

Error Description: internal error

An error occurred in the compiler that could not be resolved to a specific error code. For resolution
please contact FTDI technical support.

Error Description: local variable declarations exceed total memory size

The sum of local variable declarations in a function exceeds the maximum RAM size.

Error Description: Preprocessing failed

There was an error in the preprocessor which resulted in compilation being stopped. Refer to the
pre-processor Error reference section.

Error Description: Assembling failed

There was an error in the preprocessor which resulted in compilation being stopped. Refer to the
assembler Error Reference section.

Error Description: Linking failed

There was an error in the preprocessor which resulted in compilation being stopped. Refer to the
linker Error Reference section.

3.2.4.2 Examples for Syntax Error Codes

Error Description: syntax error

The compiler could not recognise a statement or could not resolve a sequence of statements and
identifiers.

Error Description: syntax error unterminated string

A string declaration was found which spans more than one line. Strings must include escaped
carriage returns and new line characters.

Example
char cVar;
cvVar = "\n;
cVar = "\n; // unterm nated string

Error Description: syntax error illegal escape sequence

An escape sequence in a char or string was not recognised. Valid escape sequences are listed in
Type Specifiers.

Example

int cvar = '"\!'; //illegal escape sequence

Error Description: syntax error character operation too long

More than one character was used for a char declaration. The size of a char is always 1 character so
multiple characters cannot be used in a char declaration.

Copyright © 2012 Future Technology Devices International Ltd. 58

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Example
char cVar;
cVar = "\fl'; // character operation too |ong

Error Description: syntax error asm directive not allowed

Assembler directives cannot be used in inline assembler.

Example

asm {
.ORG 0
asnvar .DB 45 1

}

Error Description: syntax error preprocessor directive not allowed

An unsupported preprocessor directive was encountered. The compiler will implement #line and

#pragma directives only.

Example

#mydirective this is illegal
3.2.4.3 Examples for General Syntax Error Codes

Error Description: undeclared identifier

The compiler detected an attempt to use an identifier that has not been declared in the current
scope.

Example

int x;
X =y; [lerror undeclared identifier 'y’

Error Description: I-value required

An expression was detected that is missing the I-value (target identifier).

Example
int iVar;
++i Var=2;//error |value required

Error Description: illegal use of struct or union operation

A structure or union was used incorrectly in an expression. Pointers to structs and unions must be
references and dereferenced appropriately when used.

Example
struct MyStruct
{
int i Mem
b

struct MyStruct *myPointer;
struct MyStruct Obj;
nmyPointer = Obj; //error Illegal use of structure or union operation

Copyright © 2012 Future Technology Devices International Ltd. 59

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Error Description: incompatible operation

An operation where the I-value and r-value are incompatible was found.

Example
int a;
int *x;
struct MyStruct

{
int m
}obj;

x=&a,;
a = ((struct MyStruct)x)->m //error inconpatible operation

3.2.4.4 Examples for Conditional Statement Error Codes

Error Description: undefined label
An reference to an undefined label was made in a goto statement. Goto statements can only
address labels in the current function body.
Example
goto L1;//error Undefined Label

Error Description: integral type expected

All values used with case statements must be constant integer values. The error is reported if value
used in a case statement is a floating point value. Values with decimal points are defined as floating
point.

Example
int iVar;
switch (iVar)
{

case 1.0: // error Integral type expected
break ;

Error Description: too many default cases

A switch statement may have only one default case. If there are more multiple default statements
then this error will be reported.

Example

int iVar;
switch (iVar)//error Too many default cases

{

defaul t
def aul t

Error Description: constant expression required

When an enumeration is initialised the value used must be a constant.

Example

int iVar;
enum eTag

{

Copyright © 2012 Future Technology Devices International Ltd. 60

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

a = iVar //constant expression required
}eObj;

Error Description: case outside of switch

A case statement was encountered which was not inside the body of a switch statement.

Example
int iVar;
if(ivar)
{
case 1:// error case outside the switch
}

Error Description: default outside of switch

A default case statement was encountered which was not inside the body of a switch statement.

Example
int main()
{
if(1)
{
return 1;
}
}
int function()
{
int iVar;
switch (iVar)
{
case 1:
return 1,
br eak;
}
}
voi d functionl(void)
{default: /lerror default outside the switch
if (1)
{
default: //error default outside the switch
{ default: //error default outside the switch
}
}
}

Error Description: duplicate case

More than one case statement in a switch statement evaluated to the same value. The value of
every case statement in a switch must be unique.

Example

int iVar;
switch (iVar) //error Duplicate case
{
case 1:
break ;
case 1:
break ;

Copyright © 2012 Future Technology Devices International Ltd. 61

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Error Description: misplaced continue

A continue statement could not resolve to a loop statement such as for, while or do.

Example
int iVar;
switch (iVar)
{

case 1:

br eak;
case 2:

br eak;

case 3:
continue;//error msplaced continue

Error Description: misplaced break
A break statement could not resolve to a statement such as switch, for, while or do.

Example

int iVar;
if (ivar)
{

}

break; //error M splaced break

Error Description: no body or expression for conditional

A do or switch expression was encountered with no body.

Example
do int x; while (1);

Error Description: duplicate label

A label name has already been used within the current scope. Label names in function must be
unique.

Example

voi d function(void)

{
cl eanup:
return;
cl eanup: //error duplicate |abel
return;

}
3.2.4.5 Examples for Storage Classes Error Codes

Error Description: storage class extern not allowed here

An extern storage class was used where it is not allowed. For instance in the parameters of a
function.

Example

Copyright © 2012 Future Technology Devices International Ltd. 62

Vinculum 1l User Guide

FTDI Document Reference No.: FT_000289
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

function(extern int iVar) //error Storage class 'extern' is not allowed here

Error Description: storage class static not allowed here

A static storage class was used where it is not allowed.

Example

function(static int iVar) //error Storage class 'static' is not allowed here

Error Description: storage class auto not allowed here

The auto storage class was used where it is not allowed.

Example

auto int iVar; //error Storage class '"auto' is not allowed here

Error Description: storage class port not allowed here

A port declaration was detected in a function, a parameter or a structure or union member. Only
global scope ports are allowed. It will also be issued when a pointer to a port is defined.

Example
port *p4@5; //error storage class 'port' not allowed here
function(port p3) //error storage class 'port' not allowed here

voi d mai n(voi d)

{

port p2@3; //error storage class 'port' not allowed here

}

Error Description: struct or union not allowed here

A struct or union has been used as a return value or parameter to a function. Only pointers to
structs or unions may be used as parameters and return values of functions.

Example
struct tag
{
char j;
b

struct tag *my[2];
struct tag funct(int);//error struct or union not allowed here

funct (2);

struct tag funct(int k) // error struct or union not allowed here

{
int c;
return my[1];
}

Error Description: too many storage classes in declaration

More than one storage class have been used in a declaration. There may be only one used at a time,
the default is auto.

Example

static extern int iVar; // error Too many storage classes in declaration

Copyright © 2012 Future Technology Devices International Ltd. 63

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Error Description: function declaration not allowed here

A function may not be declared within a function, an expression or a code block.

Example

function(int fvar()) //error function declaration not allowed here

Error Description: export symbol not allowed here

The symbol export has been used inside a function or in a declaration which does not have global
scope.

Example
function()
{
export int iVar; //error Export not allowed here
}

3.2.4.6 Examples for Declaration Error Codes

Warning Description: no storage type

No storage type has been specified for a declaration.

Example

Error Description: not an allowed type

An operation on a variable failed because of it's type. It is not allowed to dereference non-pointer
types nor use pointer types in some types of operation.

Example

int iVarl,iVar2;
ivarl = *--iVar2; //error not an allowed type

Error Description: conflicting storage type qualifier

The signed and unsigned storage type qualifiers for a declaration conflict. A declaration must be
either signed or unsigned.

Example

signed unsigned int iVarl; //error conflicting storage type qualifier

Error Description: too many storage type qualifiers

A declaration has more than one storage classes in the declaration. It must contain one of auto,
extern, static or port.

Example

extern static int iVarl; //error too many storage classes in declaration

Error Description: too many types in declaration

A declaration has more than one type in it's declaration. Only one data type may be specified for
each variable, if none is specified then int will be assumed.

Example

char int iVarl; //error too many types in declaration

Copyright © 2012 Future Technology Devices International Ltd. 64

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
. AN_151 User Manual Version 2.0.0
Chlp Clearance No.: FTDI# xxx

Warning Description: type mismatch

A the type of the I-value and r-value do not match. This may be due to a sign mismatch or data size
mismatch.

Example

char cVar;
int iVar;
cVar = iVar ; //Warning Type M smatch

Error Description: parameter number type mismatch

A mismatch occurred between the type of a parameter in a prototype and the type used in the
function declaration. The mismatch is for data size and data type differences.

Example

voi d function(int iVar);
int ilLVar;
function(iLVar);

void function(int *iVar) //Error Parameter Nunmber 1 type m smatch

{
}

Warning Description: parameter mismatch in redeclaration

A mismatch occurred between the parameters in a function's declaration or prototype and the
parameters passed to a function in a call. May also occur when a mismatch in the count of the
parameters occurs in a redeclaration.

Example
void function(int iVar);
void function(int iVar, int qVar) //error paraneter msmatch in redeclaration
{
}

function(varl, var2, var3); //error parameter m smatch in redeclaration

Warning Description: parameter number type mismatch

A mismatch occurred between the type of a parameter in a prototype and the type used in the
function declaration. The mismatch is for differences in sign.

Example

voi d function(int iVar);
unsi gned int ilLVar;
function(ilLVar);

voi d function(unsigned int iVar) //Error Paraneter Nunmber 1 type m smatch
{
}

Error Description: multiple declaration

The same variable name has been used in the same scope more than once.

Example

int iVar;
char iVvar; // error multiple declaration

Copyright © 2012 Future Technology Devices International Ltd. 65

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Error Description: cannot use a void type expression

If a void type is used then this cannot be used in an expression. For example, a function may return
void, in which case it may not be used in an expression.

Example

void function()

{
}

int iVar;

i f(iVar+function()) //error cannot use a void type in an expression

{
}

i Var ++;

3.2.4.7 Examples for Constant Range Error Codes

Error Description: integer arithmetic overflow

A constant exceeds the maximum size of an integer (27°32).

Example

char cvar = 0x100000000; //error integer arithmetic overflow

Error Description: expression not constant

A value used in a case statement, port address assignment, global variable declaration or array
initialiser list is not a constant.
Example

char cGd obal 1
char cd obal 2

87;
cG oball + 10; //error expression not constant

Example

int cvar = 1
switch (x) {
case cVar: b

}

reak; //error expression not constant

Warning Description: constant out of range

A value used in an assignment exceeds the range which can be stored in the variable.

Example

char cvar = 87654; //warning constant out of range

Error Description: constant out of range

A value used in an operation exceeds the limits for the destination variable.

Example

unsi gned char cVar;

typedef struct nyStruct

{.
int a;
int b;
}oX

Copyright © 2012 Future Technology Devices International Ltd. 66

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

unsi gned char *pa,;
unsi gned char *pv;

cVar = Oxfe;

X. a 0x55555555;

x. b Oxaaaaaaaa;

pv = (unsigned char*) &x;

pv += 4;

if (*pv == Oxaaaaaaaa) //error Constant out of range

{1

Error Description: divide by zero

An operation has a divide operation where the denominator is a constant zero.

Example

int iVar;
ivar = iVvar [/ 0; //error divide by zero

Warning Description: initialization makes pointer from integer without
cast

A pointer is initialised with a constant or variable that is not a pointer type.

Example

char *cVar = 0x12345678;//warning initialization nmakes pointer frominteger without a cast

Warning Description: signed modulus operations not supported

A modulus operation is performed with a signed dividend or devisor. The result of a modulus
operation including a signed value will be computed as if the signed value were unsigned.

Example
char y = 40;
char x = -10;
char r;

r = yw; //warning signed nodul us operations not supported
/1 the result, r, will 40

3.2.4.8 Examples for Constant Error Codes
Error Description: cannot modify const object
An attempt has been made to modify the value of a variable which has been declared as a constant.

Example

const unsigned int uiVar = 2;
ui Var ++; //cannot nmodify a const object

Error Description: cannot modify rom variable

Code which attempts to modify a variable held in ROM has been found.

Example

romint iVar;
ivar = 2; //error cannot nmodify rom vari abl e

Copyright © 2012 Future Technology Devices International Ltd. 67

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxXx

3.2.4.9 Examples for Variable Error Codes

Error Description: rom variable for structure member should be minimum

short datatype

If a structure or union is defined as a ROM storage type then the minimum size of any member
datatype is a word. Datatype short, int, long and all pointers are allowed but char is not.

Example
romstruct stx {
int x;
short vy;
char z; // error romvariable for structure menber should be m ni num short datatype

s
3.2.4.10 Examples for Array Error Codes

Error Description: size of the type is unknown or zero

An operation was attempted on a variable for which it cannot determine the correct size. Or the
variable size was determined to be zero. This may also be generated when an array size cannot be
determined from the initialiser.

Example
void *vPtrl;
vPtrl-- ; //error size of the type is unknown or zero
char x[]; //error size of the type is unknown or zero

Error Description: excess elements in array initialiser

When an array was initialised there were more initialisers than the declared size of the array.

Example

int arry[3] = {1,2,3,4}; //excess elenents in array initialiser

Error Description: array must have at least one element

An array must have one or more elements. A zero length array cannot be declared.

Example

int iArr[0]; //error Array nust have at |east one el ement

3.2.4.11 Examples for Structure Union Error Codes

Error Description: pointer to structure required on left side of "-=>"

The variable on the left side of a structure pointer operator is not a pointer to a structure or union.

Example

int iVar;
struct myStruct
{

int i Mem

b

struct myStruct St Obj;
i Var=St Obj ->i Mem //error pointer to structure required on left side of "->"

Error Description: structure required on left side of *.

Copyright © 2012 Future Technology Devices International Ltd. 68

Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

The variable on the left side of a structure member operator is not a structure or union.

Example

int iVar;
struct nyStruct

{
int i Mem
b

struct myStruct *StObj;
i Var=StObj .i Mem //error structure required on left side of

Error Description: structure or union cannot contain an instance of itself

Only pointers to self-referential instances of structures are allowed.

Example

struct nyStruct

{
struct nyStruct

{
int i Mem
}mylnnerStruct; //error structure or union cannot contain an instance of itself

b

struct nyStruct?2
{

struct nmyStruct2 st2; //error structure or union cannot contain an instance of itself
struct *myStruct2 pst2; // pointer to instance of self OK

s
Error Description: left of pointer or member not a struct or union

Only pointers to self-referential instances of structures are allowed.
Example
int x;

x. menmber = 4; //error left of pointer or nember not a struct or union
x->pointer = 5; //error left of pointer or nenber not a struct or union

3.2.4.12 Examples for Initialisation Error Codes

Error Description: address of port is not specified

A port datatype must be initialised with the address of the port.

Example

port ptl ; //address of port is not specified

Error Description: initialisation of port is not allowed

A port datatype must only be initialised with the address of the port. There can be no numerical
value assigned to the port at initialisation time.

Example

port ptl =1 ; //initialisation of port is not allowed

Error Description: initialisation of extern is not allowed

VinC issues following error message for the below given example

Copyright © 2012 Future Technology Devices International Ltd. 69

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

Example

extern int iVar =1 ; //initialisation of externals is not allowed
3.2.4.13 Examples for Function Error Codes

Error Description: too few parameters in call

A call to a function or a declaration of a function or it's prototype contains fewer parameters than
expected.

Example

void x(int, int, int);

void x(int a, int b) //error too few paranmeters in call & paraneter m smatch in redeclaration

{
}
voi d mai n(voi d)
{
x(1); //lerror too few paraneters in call
}

Warning Description: void function may not return value

A value was returned from a function which was not declared to return a value.

Example
voi d function() //warning void function may not return val ue
{
return 1;
}

Warning Description: function should return a value

No suitable return statement was found in a function which was declared to return a value.

Example

int function() //warning function should return a val ue
{
}

Error Description: parameter of type void is not allowed

A parameter to a function may not be of void type.

Example

int function(void x) //error paranmeter of type void is not allowed
{
}

3.2.4.14 Examples for Pointer Error Codes

Error Description: invalid pointer addition

An addition of 2 pointers was detected. The increment used in a pointer addition is a multiple of the
pointer size, therefore adding 2 pointers is not a valid operation.

Example

int *iPtrl,*iPtr2,*iPtr3;
int iVar;

Copyright © 2012 Future Technology Devices International Ltd. 70

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

if (iVar)
{
iPtrl = iPtr2 + iPtr3 ;//error invalid pointer Addition

}

Warning Description: copy volatile pointer into normal pointer

A volatile pointer was copied into a normal pointer. The normal pointer does not inherit the volatile
properties of the original pointer.

Example

Warning Description: copy const pointer into normal pointer

A const pointer was copied into a normal pointer. The normal pointer does not inherit the const
properties of the original pointer.

Example

Error Description: illegal port access
Not all operations are allowed on ports. Unary operations, array operations, reference, de-reference,

and port-to-port assignments are not allowed. It is not possible to create a pointer to a port or pass
or return a port from a function.

Example
port pl@o0, p2@0;

voi d mai n(void)

{
char *p3;
p2 = pl; //error illegal port access
p2++; //error illegal port access
p3 = &pl; //error illegal port access
}

Error Description: not a member of struct or union

The name to the right of a structure member or structure pointer operation is not a member of that
structure.

Example
struct q {
int a;
int b;
} staq;

if (stg.c > 1) //error not a nmenber of struct or union

Error Description: illegal use of pointer subtraction

A error is issued when pointer subtraction is encountered when constant and pointer operand.

Example
int Result;
int *x1;
Result = 2 - x1; //error Illegal use of pointer subtraction

Warning Description: pointer subtraction

Copyright © 2012 Future Technology Devices International Ltd. 71

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

A warning is issued when pointer subtraction is encountered when both operands are not both
pointers.

Example

unsi gned char ucArray[10];

unsi gned char *ucPtr;

ucPtr = ucArray;

ucPtr = ucArray - 3; // warning pointer subtraction

Error Description: illegal function pointer declaration

A function pointer was declared without the name of the function being made a pointer.
Example

int (PF)(int x, int y); //error illegal function pointer declaration

Error Description: illegal use of pointer

Pointers may only be added or subtracted. All other operations are illegal.

Example
int *iPtrl, *iPtr2,*iPtr3;
int iVar;
i f(iVvar)
{
iPtrl = iPtr2 * iPtr3 ;//error illegal use of pointer
}

Error Description: illegal use of array

Arrays may only be addressed by an offset on the left size of an expression. On the right side they
may be treated as a pointer. It is not permitted to modify the actual address of an array.

Example

unsi gned char ucArray[10];
++UcArray; /1 error illegal use of array

Warning Description: non portable pointer conversion

A conversion between a non-pointer and a pointer will result in a non-portable operation.

Example

struct nyStruct
{

char mem

b

int iVar;

struct myStruct *myPointer;

struct myStruct StArray[2];

nmyPoi nter = iVar;//warning Non portable pointer conversion

Warning Description: suspicious pointer conversion

A referencing or de-referencing operation on a pointer resulted in an inconclusive pointer type.

Example

char ***cptr1;
char *cPtr2;
char *Ptr;

Copyright © 2012 Future Technology Devices International Ltd. 72

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Ptr
Ptr

*cPtrl; //warning suspicious pointer conversion
*cPtr2; //warning suspicious pointer conversion

Error Description: invalid indirection

VinC issues following error message for the below given example

Example
int iArray;
int iVar;
ivar = 2 - iArray[2]; //lerror Invalid indirection

3.2.4.15 Examples for Bitfield Error Codes

Error Description: bit fields must contain at least one bit

Zero length bit fields are not permitted.

Example

struct nmyStruct
{

}

unsi gned char ucMem O;//error Bit fields nmust contain at |east one bit

Error Description: bit field exceeds the range

The size of a bit field exceeds the maximum range of the specified storage type.

Example

struct nyStruct
{

unsi gned int ui Mem 1;
unsi gned char ucMeml: 9;//error Bit Field Exceeds Range
unsi gned char ucMenR:5;
unsi gned char ucMenB: 5;
}my St Qbj ;

Warning Description: bit field exceeds boundary

The size of a bit field causes it to run over the maximum size of the storage type.

Example

struct nyStruct
{

unsi gned short ui Mem 12;
unsi gned short ucMem 6; //warning Bit Field Exceeds Boundary
}my St Obj ;

Warning Description: illegal use of bit operation access

A bit operation exceeded the range of the variable storage type.

Example

char x = 0OxAA

if (x.3 ==1) {}
if (x.9 ==0) {} //error illegal use of bit operation access

Copyright © 2012 Future Technology Devices International Ltd. 73

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.2.5 Pre-processor
3.2.5.1 Pre-processor Directives

The preprocessor parses special directives used in the C files. A directive starts with a ‘#’ token
followed immediately by a preprocessor keyword. By default it ends with a new-line character but it
can also end with a backslash ‘\' character which is continuation marker. Leading and trailing spaces
in the backslash character is allowed.

#Hif
The #if directive is used to conditionally include or exclude a portion of code depending on the

outcome of a certain expression.

Format:

#i f <expression>
statenments.....
#endi f

#else

The #else directive conditionally include a portion of code (codes between #else directive and #endif
directive) if the condition in #if, #ifdef or #ifndef directive results to 0.

Format:

#i f <expression>
Statenents. ..
#el se
St atenments. ..
#endi f

#Hendif

The #endif directive indicates the end of a conditional directive - #if, #ifndef and #ifdef. Please refer
to #if, #ifndef or #ifdef for the syntax.

#Herror

The #error directive is used in generating an error message and results to stop compilation process.
This directive is passed to the compiler unaltered.

Format:

#error “error message”

Hpragma

The #pragma directive is used to specify information to the compiler. It provides a way for the
compiler to offer machine /operating system-specific features while retaining the compatibility with
the C language. This directive is passed to the compiler unaltered.

Format:

#pragma <argunent/s>

#H#define

The #define directives is used for defining a symbol or macro.
For defining a symbol:

#defi ne <synbol >

Copyright © 2012 Future Technology Devices International Ltd. 74

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

For defining a macro:

#defi ne <synbol > <val ue>
#defi ne <symbol >(A, ...) <val ue>

#Hundef

The #undef directive is used to undefine a symbol but it can be redefined later
Format:

#undef <synbol >

#ifdef

The #ifdef directive is used to conditionally include a portion of the code if the symbol has been
defined using a #define directive.

Format:

#i f def <nanme>
Statenents. ..
#endi f

#Hifndef

This directive is used to conditionally include a portion of the code if the symbol has not been defined
using a #define directive. It is useful for once-only headers. It allows the header files to be included
once.

Format:

#i f ndef <synmbol >
St atenments. . .
#endi f

#Helif

The #elif directive is used if there are more than two possible alternatives
Format:

#i f <expression>
Statenment. ..

#elif < expression >
Statenent. ..

#endi f

#include

The #include directive is used in including the contents of the included file in the current source file.
Format:

#i nclude “header file”
#i ncl ude <header file>

#line

The #line directive is used to set the line number and filename of the current file (but can be
omitted). The line number in #line directive shall be assigned to the next line of code following the
said directive

Format:

#line <line number>
#line <line nunber> “fil ename”

Copyright © 2012 Future Technology Devices International Ltd. 75

FTDI

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Chip

3.2.5.1.1 Predefined Macros

The Preprocessor defines standard and VNC2 specific macros.

Standard Macros

__DATE__
Expands to the date in the current time zone.

The output is of the format: "Aug 13 2009".

__TIME__
Expands to the time in the 24 hour clock in the current time zone.

The output is of the format: "23: 12: 02".

__LINE__
This macro expands to the current line of the file where it appears. It is an integer number.

__FILE _
Expands to the name and relative path of the file in which it appears.

The path is the actual path used to compile the file relative to the current directory of the compiler.

There are no quotes placed around the filename.

VinC Specific Macros

_VINC

This is always defined by the VinC compiler. It can be used to separate code targeted specifically for

a Vinculum device from code for other devices in the same file.

_VI NCULUM
This macro expands to the model of Vinculum device. Currently it is set to 2 signifying that the
compiler supports VNC2.

_VI NCULUM_VERSI ON
The version of the VinC compiler is available in this macro. This can be used to work out any
differences between versions of the compiler.

_VDEBUG

The file is being compiled in debug mode with the flag "-d 1" set by in the compiler command line.

NOTE: V1.4.0 toolchain and above.
_VRELEASE
Release mode has been specified by the flag "-d 0" in the compiler command line. NOTE: V1.4.0
toolchain and above.
3.2.5.2 Error reference
Preprocessor error messages take the following form:

<filename> |line <line nunber>: (error|warning|info) P<code> <description>

Error codes take one of the following values.

Error codes Description

1001 missing (in expression
1002 missing) in expression
1005 numeric too large
1006 unterminated #if

1007 unterminated #ifdef
1008 unterminated #ifndef
1010 #elif without #if

1011 #else without #if
1012 #Helse after #else
1013 #endif without #if

Copyright © 2012 Future Technology Devices International Ltd.

76

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

1014 constant too large

1016 redefined

1017 location of the previous definition
2000 invalid identifier

2001 bad directive syntax

2002 missing closing *)'

2003 invalid include filename

2004 macro argument syntax error
2005 missing expression

2006 expression syntax error

3001 too many input files

3002 no input file specified

3003 no such file or directory

3006 #include nested too deep

3008 macro names must be identifiers
4001 argument mismatch

4003 unterminated argument list

3.2.5.2.1 Examples for Directive Error Codes

Error Description: missing (in expression

Open parenthesis is missing in the #if directive expression.
Example

#if x==1)
Error Description: missing) in expression
Close parenthesis is missing in the #if directive expression.

Example
#if (x==1

Error Description: numeric too large

Constant value given in the #if directive expression exceeds OxXFFFFFFFF.
Example

#i f 10000000000000000000000000000+1

Error Description: unterminated #if
#if directive in a file must be matched by a closing #endif directive
Example

#f 1

Error Description: unterminated #ifdef

#endif directive is missing for #ifdef directive

Copyright © 2012 Future Technology Devices International Ltd. 77

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Example
#i fdef xx

Error Description: unterminated #ifndef

#endif directive is missing for #ifndef directive

Example

#i f ndef TEST
#define TEST

Error Description: #elif without #if
Nested #elif directive in a file must be matched with #if and #endif directive

Example
#elif 1

Error Description: #else without #if

#else directive in a file must be matched with #if and #endif directive

Example

#el se

Error Description: #else after #else

Only one #else directive should have between #if and #endif directive

Example

#if 1
#elif 1
#el se
#el se
#endi f

Error Description: #endif without #if

#if directive in a file must be matched with #endif directive

Example
#endi f

Warning Description: constant too large

Constant value given in the #if directive expression exceeds OXFFFFFFFF

Example

#if x==10000000000000000000000000000
#endi f

Warning Description: redefined

if the macro is redefined then warning will issue

Copyright © 2012 Future Technology Devices International Ltd. 78

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Example

#defi ne MACRO 10
#defi ne MACRO

Warning Description: location of the previous definition

if the macro is redefined then warning will issue

Example

#defi ne MACRO 10
#defi ne MACRO

3.2.5.2.2 Examples for File Error Codes
Error Description: invalid identifier
#ifndef directive expects identifier instead of constant value

Example
#i fndef 1

Error Description: bad directive syntax

#define directive expects identifier instead of directive

Example

#defi ne #define

Error Description: missing closing ")’

While using the identifier for replacement expects closing parenthesis ')’

Example
#define FUNC(x,y) Result = Oxff

FUNC(1,2; // error mssing closing ")’
Error Description: invalid include filename
Unwanted parenthesis given for the file name in #include directive
Example

#include ""file.h"

Error Description: macro argument syntax error

#define directive expects valid argument
Example

#defi ne FUNC((x) #x

Error Description: missing expression

#if directive expects constant expression instead of NULL.

Copyright © 2012 Future Technology Devices International Ltd. 79

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Example
#if

Error Description: expression syntax error

#define directive expects token string for the identifier

Example

#defi ne test

#if test++1 //error
#define x 10

#endi f

3.2.5.2.3 Examples for General Error Codes

Error Description: too many input files

Too many input files specified after application name.

Example
VinCPP filel.c file2.c

Error Description: no input file specified

No input file is specified after the application name

Example

Vi nCpp

Error Description: no such file or directory

File does not exist

Example

#i nclude "file.h"

Warning Description: #include nested too deep

Recursive inclusion of file

Example

//filel.h
#include “file2.h”
//file2.h
#include “filel.h”

Warning Description: macro names must be identifiers

Macro names in —U option does not start with an alphabet

Example
VinCpp file.c -U 9MACRO

Copyright © 2012 Future Technology Devices International Ltd. 80

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Error Description: argument mismatch

Number of arguments in a macro call is not correct

Example

#define func(x,y) x##y
voi d main()

{

int x = func(10); //Ilacking argunent

}

Error Description: unterminated argument list

Unterminated string value in a function-like macro

Example

#define func(x,y,) x##y
voi d main()

{

int x = func(10,"test); //unterm nated string

}

3.3 VinAsm Assembler

The assembler will Normally, the assembler generates an object file which is in ELF format. If debug
flag is enabled, the assembler generates debug information which is in DWARF2 format.

3.3.1 Assembler Command Line Options

The VNC2 Assembler Command Line options are listed in the table below.

Vi nASM [options] [file ...]

Option Description

-V Verbose output of the command lines.

-d level Includes debugging information in the object file.
-o filename Specify output filename

-1 directory Adds a search directory for include files

-1 filename Specify a log filename

--hel p Display help message

--version Display version number

-C Case-sensitive checking for labels/symbols

-u Ignores underscores in symbols/labels

3.3.2 Assembly Language

The programming syntax used by the VNC2 Assembler is similar to the other assemblers. There may
be variation on some aspects yet in general, still the same with other existing assemblers.
3.3.2.1 Lexical Conventions

There are conventions that needs to be followed when creating a source program using the VNC2
Assembler. The convention for the following must be noted.

Copyright © 2012 Future Technology Devices International Ltd. 81

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.3.2.1.1 Comments
The assembler supports single-line comments. This can be done using the '#' character. Thus, any
text following the '#' character is ignored.

3.3.2.1.2 Functions

There is a mechanism to distinguish a label from a function. If a certain label needs to be considered
as a function, then .FUNCTION directive must be present right after the label declaration. Then .
FUNC_END must be present at the end of the function scope.

Related Links
.FUNCTION
.FUNC END

3.3.2.1.3 ldentifiers

Identifiers may be used as label, function name, etc. It consists of alphanumeric and selected special
characters namely:

e 9% (percent)

_ (underscore)
@ (at sign)

(O (open and close parenthesis)

* (asterisk)

3.3.2.1.4 Keywords

Keywords are tokens which have special meaning to the assembler. It can either be assembler
mnemonics (assembler instructions) or directives.

Upon invoking the keywords, correct syntax must be provided and take note that it must be in
uppercase.

3.3.2.1.5 Labels

A label consists of an identifier and followed by a colon ':'. By default, a label name is case-
insensitive unless -c option is used.

A warning will be issued if similar label is defined.

3.3.2.1.6 Numeric Value

Numeric value can be of two forms - decimal and hexadecimal. There's no restriction on where to use
each type. Using either of the forms will do.

3.3.2.1.7 White Space Characters

Any number of white spaces is allowed between tokens. For directives and instructions, it must be
contain in a single line.

3.3.3 Assembler Directives

There are several kinds of directives that are supported by the VNC2 Assembler. The following are
the classifications:

e Data Directives

o Debugger Directives

e End Directive

e File Inclusion Directive

e Location Control Directives

¢ Symbol Declaration Directives

Copyright © 2012 Future Technology Devices International Ltd. 82

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.3.3.1 Data Directives

Data directives are used in allocating memory. The allocated memory may be initialized with some
values.

3.3.3.1.1 .ASCII Directive

Syntax

| abel .ASCII string
Parameters

| abel

The name of the identifier to which the character string will be assigned to.

string
The string literal to be assigned to label. It must be enclosed with double quotes.

Description

The .ASCII directive allows the assembler to accept string literal value for a certain label. The
assembler generates the ASCII codes of all the characters in the string and store in consecutive
bytes in memory. The assembler does not add NULL terminator to the string literal value.

Example

str .ASCII "The quick brown fox junps over the |lazy dog."
Related Links
ASCIIZ

3.3.3.1.2 .ASCI11Z Directive

Syntax

| abel .ASCII1Z string
Parameters

| abel

The name of the identifier to which the character string will be assigned to.

string
The string literal to be assigned to label. It must be enclosed with double quotes.

Description

The .ASCIIZ directive is similar to .ASCII except that the assembler automatically adds a NULL
terminator to the string literal value.

Example

str .ASClIIZ "The quick brown fox junps over the |lazy dog."

Related Links
ASCII

3.3.3.1.3 .CONST Directive

Syntax
| abel . CONST val ue

Copyright © 2012 Future Technology Devices International Ltd. 83

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Parameters

| abel
The name of the identifier to which the value will be assigned to.

val ue
The integer value to be assigned to label. It may be decimal or hexadecimal value.

Description

The .CONST directive creates symbols for use in our assembler expressions. Constants may not be
reset after having once being initialized, and the expression must be fully resolvable at the time of
the assignment. This is the principal difference between symbols declared as .CONST and those
declared as .DB/.DW/.DD.

Example

_val ue . CONST Oxff
var . CONST 100

Related Links
.DB
.DD
.DW

3.3.3.1.4 .DATA_DEF Directive

Syntax

| abel . DATA _DEF size
Parameters

| abel

The name of the identifier.
si ze
The size (in bytes) of the symbol to be declared.
Description

The .DATA_DEF directive is used to allocate memory for a structure variable. The structure variable
must be initialized with values.

To have a complete declaration of structure variable, the following is the syntax.

argunment 1 . DATA_DEF ar gunent 2
argunent1l . DATA_INIT argunment2...argunment n

argunment 1 . DATA_END

Notes

1. The directives must be in correct order.

2. Instances of .DATA_INIT directive will depend on the number of structure fields need to be
initialized.

3. There must be one instance of .DATA_DEF and .DATA_DEF_END in every structure declaration.
Example

See .DATA_INIT example.

Copyright © 2012 Future Technology Devices International Ltd. 84

Vinculum 1l User Guide

FTDI Document Reference No.: FT_000289
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

Related Links

.DATA_DEF_END
DATA_INIT

3.3.3.1.5 .DATA_DEF_END Directive

Syntax

| abel .DATA_DEF_END
Parameters

| abel

The name of the identifier. This should correspond to the label in .DATA_DEF directive.

Description

The .DATA _DEF_END directive is used to indicate the end of a structure variable declaration. Prior to
this directive, a .DATA_DEF directive must be present.

Example
See .DATA_INIT example.

Related Links

.DATA_DEF
DATA_INIT

3.3.3.1.6 .DATA_INIT Directive

Syntax

| abel .DATA_INIT value offset size_of_each_val ue total _size
Parameters

| abel

The name of the identifier. This should correspond to the label in .DATA_DEF and .
DATA_DEF_END directives.

val ue
The value of each field in the structure. For arrays, initialization can be done by separating
values with commas e.g. 10, 20, 30.

The value can be any of the following form:

Form Example
Character a'

Numeric 10, Oxff

String Literal "this is a string"

of f set
The offset (in bits) of the field member in the structure. For the first field, it should start with
offset 0. Subsequent field offset should be relative to the preceding structure field.

size_of _each_val ue
The size (in bits) of each member field e.g. 32 bits for field with integer as the datatype.

total _size
The total size of the member field e.g. 96 bits for field which is an integer array having 3
elements.

Copyright © 2012 Future Technology Devices International Ltd. 85

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

The .DATA_INIT directive is used to initialize the member fields of the structure. Number of instances
of this directive will depend on the number of structure fields need to be initialized. This directive
must be within the .DATA_DEF and DATA_DEF_END directives.

Example

C structure:

struct st

{

b

char name[10];
int x;

char c;

int y[2];

Initial values of the struct variable:

struct st var = { "testing",

Equivalent directives:

var
var
var
var
var
var

100,
Do
b
. DATA_DEF 23
.DATA_INIT "testing" O
.DATA_INIT 100 80

.DATA_INIT '¢'
.DATA_INIT 10, 20 120
. DATA_DEF_END

The total size of struct st is 23 bytes.

10, 20

8 80

64

The 'name’ field starts at offset O since it is the first member field. The size of char is 8 bits (1 byte) ,
since it is an array of 10, then the total size is 80 bits.

The 'X' field starts at offset 80 since the prior field occupies from 0th-79th bit. The size of int is 32 bits
(4 bytes), then the total size is still 32 bits (4 bytes).

The 'c' field starts at offset 112 (offset of 'x' plus total size of 'x"). The size_of_each_value and

total_size are equal to 8 bits (1 byte).

The 'y field starts at offset 120 (offset of 'c' plus total size of 'c’). The size_of_each_value is 32 bits
(4 bytes), then the total_size is 64 (8 bytes).

NOTE: The units used is in bits so that it will still cater for bitfields.

Related Links

.DATA_DEF

.DATA_DEF_END

3.3.3.1.7 .DB Directive

Syntax

| abel . DB num of bytes value/s
Parameters

| abel

The name of the identifier.

num of _bytes

val ue/ s

The number of bytes to be allocated.

Copyright © 2012 Future Technology Devices International Ltd. 86

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The initial values to be assigned to label.

Description

The .DB directive declares a number of bytes of memory in either DATA, TEXT, or .BSS segment. If the
size of the values is less than num_of_bytes, values will be padded with NULL value/s. If values is a
string, initialization can be done by enclosing the string with double quotes. Other possible way is
that it can be taken one character at a time and it will be comma-separated.

If values is a '?', it means that the data will be part of the BSS segment rather than the DATA or TEXT
segment.
Example

_varl .DB 10 Oxff

var 2 .DB 5 "TEST"

var 3 .bpB5'T, 'E, 'S, 'T
data .DB 20 ?

Related Links
.DW
.DD

3.3.3.1.8 .DD Directive

Syntax

| abel . DD num_ of _doubl e_words val ue/s
Parameters

| abel

The name of the identifier.

num_of _doubl e_wor ds
The number of double words to be allocated.

val ue/ s
The initial values to be assigned to label.

Description

The .DD directive declares a number of double words of memory in either .data, TEXT, or BSS
segment. If the size of the values is less than num_of_double_words , values will be padded with
NULL value/s . If values is a string, initialization can be done by enclosing the string with double
quotes. Other possible way is that it can be taken one character at a time and it will be comma-
separated.

If values is a '?', it means that the data will be part of the BSS segment rather than the DATA or TEXT
segment.
Example

_varl .DD 10 Oxff
var 2 .DD 5 "TEST"
var_3 .bbs5'T, 'E, 'S, 'T

dat a .DD 20 ?
Related Links
.DW
.DD

3.3.3.1.9 .DW Directive

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 87

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

| abel .DW num of words val ue/s

Parameters

| abel
The name of the identifier.

num_of _wor ds
The number of words to be allocated.

val uel/ s
The initial values to be assigned to label.

Description

The .DW directive declares a number of words of memory in either .data, TEXT, or BSS segment. If
the size of the values is less than num_of_words , values will be padded with NULL value/s . If
values is a string, initialization can be done by enclosing the string with double quotes. Other
possible way is that it can be taken one character at a time and it will be comma-separated.

If values is a '?', it means that the data will be part of the BSS segment rather than the DATA or TEXT
segment.

Example

_varl .DW 10 Oxff
var 2 .DW5 "TEST"
var_3 .bws'T, 'E, 'S, 'T

dat a .DW 20 ?
Related Links
.DB
-DD

3.3.3.2 Debugger Directives

Debugger directives are used by the compiler to pass debugging information to the Debugger.
The following are the debug information:

e Enum

e Structure

e Union

o File

e Line Number

e Function

o Typedef

e Variable
3.3.3.2.1 .ENUM Directive

Syntax

. ENUM name

Parameters

name
The name of the enum declaration. It should be enclosed with double quotes.

Description

The .ENUM directive is used to pass the name of the enum as part of the enum debug information.

Copyright © 2012 Future Technology Devices International Ltd. 88

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

For a complete enum declaration, the following must be the syntax:

. ENUM name_of _enum
. ENUMERATOR nane val ue

. ENUM_END nane_of _enum

Notes

1. Directives should be in proper order.

2. Instances of .ENUMERATOR directive will depend on the number of enumerators present.

3. The 3 directives should be present.

Example

Related Links
.ENUMERATOR
.ENUM_END

3.3.3.2.2 .ENUMERATOR Directive

Syntax

. ENUMERATOR nane val ue

Parameters

name

The name of the enumerator. It should be enclosed with double quotes.

val ue
The value of the enumerator.

Description

The .ENUMERATOR directive is used to specify an enum value. Each .ENUMERATOR directive
corresponds to one enumerator, thus at least one instance of this directive must be present in

setting the enum debug information.

For a complete enum declaration, the following must be the syntax:

. ENUM nane_of _enum
. ENUMERATOR nane val ue

. ENUM_END nane_of _enum

Example

See example in .ENUM.

Related Links

.ENUM
.ENUM_END

3.3.3.2.3 .ENUM_END Directive

Syntax

. ENUM_END nane

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 89

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

nane
The name of the enum declaration which should correspond to the name in .ENUM directive.
It should be enclosed with double quotes.

Description

The .ENUM_END directive is used to indicate the end of an enum declaration. Prior to this, a .ENUM
directive must be present.

For a complete enum declaration, the following must be the syntax:

. ENUM name_of _enum
. ENUMERATOR nane val ue

. ENUM_END nane_of _enum

Example

See example in .ENUM.

Related Links

-ENUM

.ENUMERATOR

3.3.3.2.4 .FILE Directive

Syntax

.FILE filenanme

Parameters
fil ename
The filename of the C file. It should be enclosed with double quotes.
Description

The .FILE directive specifies the C filename.

Example
.FILE "fil ename.c"

3.3.3.2.5 .FUNCTION Directive

Syntax

. FUNCTI ON function_name nodifierl..mdifier n

Parameters

function_nane
The name of the function. It should be enclosed with double quotes.

nmodi fi er
The modifier/s of the function e.g. static, volatile, etc.
Description

The .FUNCTION directive is used to pass a function information from the compiler to the debugger. It
is also used as a mechanism to distinguish a label from a function.

To declare a function, .FUNCTION and .FUNC_END must be indicated.
To complete a function declaration, the following is the syntax:

. FUNCTI ON argunment 1...argunment n
. RETURN argunent 1..argunent n

Copyright © 2012 Future Technology Devices International Ltd. 90

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

. PARAMETER ar gument

. FUNC_END ar gunent

Notes

1..argunment

n

1. If the function has no parameters, then .PARAMETER can be omitted from the declaration.

.RETURN and .PARAMETER come in any order.

2
3. .FUNCTION must be the starting directive while .FUNC_END should be the ending directive.
4

Only .PARAMETER can have multiple instances.

Example

C function:

static int function(const

{
}

return(x +y);

Equivalent ASM Directives:

function:
. FUNCTI ON
.RETURN "int" 32
. PARAMETER " x"
. PARAMETER "y"

"function"

SI GNED
32 "int"
32 "int"

asm instructions here...

. FUNC_END

Related Links
PARAMETER
.RETURN
[FUNC_END

"function"

int x,

SI GNED
SI GNED

3.3.3.2.6 .FUNC_END Directive

Syntax
. FUNC_END nane

Parameters

name

3 NORMAL 0

NORMAL 11 NORMAL
NORMAL 15 NORMAL

The name of the function. This should correspond to the name in .FUNCTION directive. The

name must be enclosed with double quotes.

Description

The .FUNC_END directive is used to indicate the end of a function. Prior to .FUNC_END, a .FUNCTION

directive must be present.

Example

See example in .FUNCTION.

Related Links
.FUNCTION

Copyright © 2012 Future Technology Devices International Ltd. 91

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

.PARAMETER
.RETURN

3.3.3.2.7 .LINE Directive

Syntax

.LINE l'i ne_nunber

Parameters

|l i ne_nunber
The line number in the C source file. Line number must be greater than 0.

Description

The .LINE directive is used to pass the line number information for each C statement.

Example
.LINE 10
3.3.3.2.8 .PARAMETER Directive

Syntax

. PARAMETER nane size type sign_flag pointer_flag
of fset array_flag array_di nensi on pointer_di mension
I'i ne_nunmber nodifier 1..nodifier n

Parameters

nane
The name of the parameter.

si ze
The size (in bits) of the parameter.

type
The datatype of the parameter.

sign_flag
Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type
b) UNSIGNED - unsigned type

pointer_flag
Indicates if the variable is a pointer type. The following are the two possible values:

a) POINTER - pointer
b) NORMAL - not a pointer

of f set
The stack offset of the parameter.

array_flag
Indicates if the variable is an array. The following are the possible values:

a) ARRAY - Array
b) NORMAL - Not an array

array_di mensi on
The dimension of the array. If array_flag is 1, array_dimension must be greater than O.

poi nt er _di mensi on
The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

i ne_nunber

Copyright © 2012 Future Technology Devices International Ltd. 92

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The line number in the C source file where the parameter is declared.
nmodi fi er
The modifiers of the parameter e.g. const, volatile, etc.

Description

Example

See example in .FUNCTION.

Related Links

.FUNCTION
.RETURN
.FUNC_END

3.3.3.2.9 .RETURN Directive

Syntax

. RETURN dat at ype size sign_flag pointer_flag
of fset array_flag array_di nensi on pointer_di mensi on

Parameters

dat at ype
The return type of the function.

size
The size (in bits) of the return type.

sign_flag
Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type
b) UNSIGNED - unsigned type

pointer_flag
Indicates if the variable is a pointer type. The following are the two possible values:

a) POINTER - pointer
b) NORMAL - not a pointer

of f set
The stack offset of the return value.

array_flag
Indicates if the variable is an array. The following are the possible values:

a) ARRAY - Array
b) NORMAL - Not an array

array_di nensi on
The dimension of the array. If array_flag is 1, array_dimension must be greater than O.

poi nt er _di nensi on
The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.
Description
The .RETURN directive is used to pass the function return type debug information. This directive
should always be present once function debug information is set.
Example
See example in .FUNCTION.

Copyright © 2012 Future Technology Devices International Ltd. 93

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Related Links
[FUNCTION
LPARAMETER
[FUNC_END

3.3.3.2.10 .STRUCT Directive

Syntax

. STRUCT nane size
Parameters

name

The name of the structure. It should be enclosed with double quotes.
si ze
The size (in bits) of the structure.
Description

The .STRUCT directive is used to pass the name of the structure as part of the structure debug
information. This should be the first directive to used once a structure debug information needs to be
passed.

To pass the complete structure information, the following is the syntax:

. STRUCT ar gunent
. STRUCTMEM ar gunent 1. . argunment n

. STRUCT_END ar gunent

Example

Related Links

STRUCTMEM
STRUCT_END

3.3.3.2.11 .STRUCTMEM Directive

Syntax

. STRUCTMEM nanme datatype size sign_flag pointer_flag offset
array_flag array_di mensi on pointer_di nensi on

Parameters

name
The name of the structure field. It must be enclosed with double quotes.

dat at ype
The datatype of the structure field.

si ze
The size (in bits) of the structure field.

sign_flag
Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type
b) UNSIGNED - unsigned type

pointer_flag
Indicates if the structure field is a pointer type. The following are the two possible values:

Copyright © 2012 Future Technology Devices International Ltd. 94

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

a) POINTER - pointer
b) NORMAL - not a pointer

of f set
The offset (in bits) of structure field. Offset should start with 0. - Not used

array_flag
Indicates if the structure field is an array. The following are the possible values:

a) ARRAY - Array
b) NORMAL - Not an array

array_di mensi on
The dimension of the array. If array_flag is 1, array_dimension must be greater than O.

poi nt er _di mensi on
The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

Description

The .STRUCTMEM directive is used to pass the structure field debug information. The number of
instances of this directive depends on how many fields are present within a structure. This directive
should be within .STRUCT and .STRUCT_END.

Example
See example in .STRUCT

Related Links

.STRUCT
STRUCT_END

3.3.3.2.12 .STRUCT_END Directive

Syntax

. STRUCT_END nane

Parameters

nanme
The name of the structure. This should match with the name in .STRUCT directive.

Description

The .STRUCT_END directive is used to indicate the end of a structure declaration. Prior to .
STRUCT_END, a .STRUCT directive should be present.

Example
See example in .STRUCT.

Related Links

.STRUCT
STRUCTMEM

3.3.3.2.13 .TYPEDEF Directive

Syntax

. TYPEDEF nane type_defined_name

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 95

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

name
The name of the datatype. It must be enclosed with double quotes.

type_defi ned_name
The new name of the datatype. It must be enclosed with double quotes.

Description
The .TYPEDEF directive is used to pass a typedef debug information.

Example

. TYPEDEF “unsigned int” “uint_32"
3.3.3.2.14 .UNION Directive

Syntax

. UNI ON nane size

Parameters

name
The name of the union. It must be enclosed with double quotes.

si ze
The size (in bits) of the union.
Description

The .UNION directive is used to pass the name of the union as part of the union debug information.
This should be the first directive to used once a union debug information needs to be passed.

Example

Related Links
.UNIONMEM
(UNION_END

3.3.3.2.15 .UNIONMEM Directive

Syntax

. UNI ONMEM nane dat at ype size sign_flag pointer_flag offset
array_flag array_di mensi on pointer_di mension

Parameters

name
The name of the union field. It must be enclosed with double quotes.

dat at ype
The datatype of the union field. It must be enclosed with double quotes.

size
The size (in bits) of the union field.

sign_flag
Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type
b) UNSIGNED - unsigned type

pointer_flag
Indicates if the structure field is a pointer type. The following are the two possible values:

a) POINTER - pointer
b) NORMAL - not a pointer

Copyright © 2012 Future Technology Devices International Ltd. 96

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

of f set
The offset of the union field. This is always set to O.

array_flag
Indicates if the structure field is an array. The following are the possible values:

a) ARRAY - Array
b) NORMAL - Not an array

array_di nensi on
The dimension of the array. If array_flag is 1, array_dimension must be greater than O.

poi nt er _di nensi on
The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

Description

The .UNIONMEM directive is used to pass the union field debug information. The number of instances
of this directive depends on how many fields are present within a union. This directive should be
within .UNION and .UNION_END.

Example
See example in .UNION.

Related Links

.UNION
.UNION_END

3.3.3.2.16 .UNION_END Directive

Syntax

. UNI ON_END nane

Parameters

name
The name of the structure. This should match with the name in .STRUCT directive.

Description

The .UNION_END directive is used to indicate the end of a structure declaration. Prior to .
UNION_END, a .UNION directive should be present.

Example
See example in .UNION.

Related Links

.UNION
.UNIONMEM

3.3.3.2.17 .VARIABLE Directive

Syntax

. VARI ABLE "nanme" size "datatype" sign_flag pointer_flag offset
array_flag array_di mensi on pointer_di mension |ine_nurber
nodi fierl.omodifier n

Parameters

name

Copyright © 2012 Future Technology Devices International Ltd. 97

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The name of the variable.

size
The size of the variable in bits.

dat at ype
The datatype of the variable.

sign_flag
Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type
b) UNSIGNED - unsigned type

pointer_flag
Indicates if the variable is a pointer type. The following are the two possible values:

a) POINTER - pointer
b) NORMAL - not a pointer

of f set
The offset address of the variable in the memory. The following are the possible values:

a) >=0 - Local variables (stack offset)
b) -1 - Global variables
c) -2 - Weak variables

array_flag
Indicates if the variable is an array. The following are the possible values:

a) ARRAY - Array
b) NORMAL - Not an array

array_di nensi on
The dimension of the array. If array_flag is 1, array_dimension must be greater than O.

poi nt er _di nensi on
The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

|l i ne_nunber
The line number where the variable is defined in th C source file. This must be greater than
0.

nodi fi er
The list of modifiers e.g. static, volatile, etc.

Description

The .VARIABLE directive is used to specify a variable declaration.

Example

C variable declaration:

volatile int *w 10];

Equivalent ASM Directive:

. VARI ABLE "w' 160 "int" SI GNED PO NTER -1

3.3.3.3 End Directive

End directive is used in terminating an asm source program.

3.3.3.3.1 .ENDP Directive

Syntax

. ENDP

Copyright © 2012 Future Technology Devices International Ltd. 98

ARRAY

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Parameter

None

Description

The .ENDP directive indicates the end of the program. Any instructions after .ENDP shall be
discarded. This is only applicable for TEXT segment.

3.3.3.4 File Inclusion Directive

File inclusion directive is used to add the contents of an include file into the current file.

3.3.3.4.1 .INCLUDE Directive

Syntax
. I NCLUDE fil ename

Parameters

filenane
The name of the include file. The file extension must be .asm. It must be enclosed with
double quotes. Relative or absolute path can be appended into the filename. In cases
wherein path can be eliminated in filename, the path can be set using the -1 command-line
option or it may be set using the VINASM_INCLUDE environment variable.
Description
The .INCLUDE directive is used to tell the assembler to treat the contents of the include file as if
those contents are part of the current asm file.
Examples

. I NCLUDE "i ncl ude. asnf'
. I NCLUDE " pat h/include. asnt

3.3.3.5 Location Control Directives

Location control directives are used to control the location counter or current section.

3.3.3.5.1 .ABS Directive

Syntax
. ABS
Parameter

None

Description

The .ABS directive is used to tell the linker that the code generated is absolute and not relocatable.
That is, it allows the programmer to change the way the assembler generates object code.

The .ABS directive must be used for .ORG directives to be heeded by the assembler. If the .ABS
directive is not used, .ORG directives will be ignored.

3.3.3.5.2 .BSS Directive

Syntax

. BSS
. BSS synbol size

Copyright © 2012 Future Technology Devices International Ltd. 99

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Parameters

synbol
The name of the symbol to be placed in the BSS segment.

si ze
The size (in bytes) of the symbol.
Description

If .BSS has no argument, it implies that the assembler will change the current section to .bss.

If .BSS has arguments, it instructs the assembler to define a symbol in the BSS segment and
increments the location counter by size. At this time, the current section is not change to .bss.

3.3.3.5.3 .DATA Directive

Syntax
. DATA
Parameter

None

Description

The .DATA directive is used to declare that the content which follows the asm file is part of the DATA
segment.

3.3.3.5.4 .EVEN Directive

Syntax
. EVEN
Parameter

None

Description

The .EVEN directive directs the assembler to place the following content of the asm file in an even
address. That is, the location counter is adjusted to an even value if it is currently odd. For TEXT
segment, address are in terms of word. On the other hand, address in DATA segment are in terms of
byte.

3.3.3.5.5 .0ODD Directive

Syntax
. ObD

Parameter

None

Description

The .ODD directive directs the assembler to place the following content of the asm file in an odd
address. That is, the location counter is adjusted to an odd value if it is currently even. For TEXT
segment, address are in terms of word. On the other hand, address in DATA segment are in terms of
byte.

3.3.3.5.6 .ORG Directive

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 100

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

. ORG address

Parameter
addr ess
The origin address. The address may be decimal or hexadecimal value.
Description

The .ORG directive instructs the assembler to place the content that follows at the specified address.
The operand must be a valid address.

Note that the origin address will only be considered once the assembler is in absolute mode,
otherwise this will be discarded. By default, the assembler is not in absolute mode. The assembler
enables absolute mode using the .ABS directive.

For TEXT segment, address are in terms of word. On the other hand, address in DATA segment are in
terms of byte.
Example

. ORG Oxf f
. ORG 255

3.3.3.5.7 .TEXT Directive

Syntax
. TEXT
Parameter

None

Description

The .TEXT directive is used to declare that the content which follows in the asm file is part of code or
TEXT segment of the program.

3.3.3.6 Symbol Declaration Directives

Symbol declaration directives are used to define symbolic constants. Also, these are used in setting
the attribute of a certain symbol.

3.3.3.6.1 .EQU Directive

Syntax

| abel . EQU val ue
Parameters

| abel

The name of the identifier to which the value will be assigned to.

val ue
The constant value that will be assigned to label.

Description

The .EQU directive assigns a constant value to an identifier.

Examples

address . EQU Oxff
_label .EQU 1000

3.3.3.6.2 .GLOBAL Directive

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 101

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

. GLOBAL export_flag synboll, ..., synboln

Parameters

export_flag
Indicates if the symbol needs to be exported or not. The following are the possible values:

a) EXPORT - symbol needs to be exported
b) DO_NOT_EXPORT - symbol does not need to be exported
synbol

The name of the symbol to be declared as global.
Description

The .GLOBAL directive lets a particular symbol to be global in scope.

Note: The symbol must be declared first before using it in .GLOBAL directive.

Examples

. GLOBAL main
. GLOBAL func, funcl

3.3.3.6.3 .LOCAL Directive

Syntax
.LOCAL synmbol 1, ..., synboln
Parameters
synbol
The name of the symbol to be declared as local.
Description

The .LOCAL directive lets a particular symbol to be local in scope, thus the symbol is just visible
within the file.

Note: The symbol must be declared first before using it in .LOCAL directive.
Examples

.LOCAL main
.LOCAL func, funcl

3.3.3.6.4 .\WEAK Directive

Syntax
.\W\EAK symbol 1, ..., synmboln
Parameters
synbol
The name of the symbol to be declared as weak.
Description
The .WEAK directive is used for extern variables.
Note: In order for a weak symbol to be valid, the symbol must have a global declaration in another
file. If not, an error will be issued by the linker once all the object files will be linked.
Examples

. V\EAK mai n
. W\EAK func, funcl

Copyright © 2012 Future Technology Devices International Ltd. 102

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.3.4 Machine Instructions
VNC?2 offers various instructions. The following are the categories of the instructions:
e CPU General

e CPU Stack Operation

e CPU Memory Operation

e CPU Bitwise Shift Operation

e CPU Logic Operation

e CPU Arithmetic Operation

e CPU Bitwise Operation

e CPU I/0 Operation

e CPU Comparison

e CPU Program Flow

3.3.4.1 CPU General Instructions

These set of instructions describes the general operations of the CPU. This includes flag handling,
interrupts, CPU states and ROM access.

3.3.4.1.1 NOP

Syntax
NOP
Description

The NOP (No Operation) instruction advances the program counter without altering the CPU state.

3.3.4.1.2 HALT

Syntax
HALT
Description

Halt the processor at this instruction. Once the CPU has been halted it cannot be un-halted.

3.3.4.1.3 WAIT

Syntax
VWAI T
Description

Halt the processor at this instruction, and enter low power mode, until an interrupt is received.

The WAIT instruction uses the general interrupt pin only and the debug interrupt pin is ignored.

Syntax
WAIT ia
Description

Halt the processor at this instruction, and enter low power mode, until hardware interrupt ia is
received. If an interrupt other than interrupt ia is received, it will be ignored and the CPU will
resume in low power mode.

Copyright © 2012 Future Technology Devices International Ltd. 103

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The WAIT instruction uses the general interrupt pin only and the debug interrupt pin is ignored.

3.3.4.1.4 STOP

Syntax
STOP

Description

Halt the processor, and shut down all internal subsystems.

3.3.4.1.5RTS

Syntax
RTS

Description

Return from a subroutine call. 3 bytes are removed from the stack and loaded to the program
counter, PC. The next instruction executes the instruction at this new PC address.

3.3.4.1.6 IRET

Syntax
| RET

Description

Return from an interrupt. 5 bytes are removed from the stack, 2 bytes for the flags register and 3
bytes for the program counter, PC. The next instruction executes the instruction at this new PC
address.

3.3.4.1.7 HCF

Syntax
HCF

Description
N/A

3.3.4.1.8 SAVEF

Syntax
SAVEF

Description

The 16 CPU status flags F are saved in the 16 alternate (mirror) flags F'.

3.3.4.1.9 SWAPF

Syntax
SWAPF

Description

Exchange the 16 primary EMCU flags F with the alternate flag set F'.

3.3.4.1.10 INT

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 104

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

INT ia

Description

Generates a software interrupt. The flags register and program counter are pushed to the stack (6
bytes). The program counter is loaded with the address of the debug interrupt service routine. INTT
is mapped to interrupt 2 and INTD is mapped to interrupt 1.

3.3.4.1.11 SETTI

Syntax
SETf I

Description
Set the flag indexed by fl.

3.3.4.1.12 CLRfl

Syntax
CLRf |
Description
Clear the flag indexed by fl.

3.3.4.1.13 CPYF

Syntax
CPYF fl fu
Description
Copy CPU flag indexed by fu to flag indexed by fl.

3.3.4.1.14 TXL

Syntax
TXL da sa
Description

Reads a single byte of data from the ROM address pointed to by the 32 bit value stored in memory
address sa to memory location specified by da (which may be indirect).

The address pointed to by sa is always a 32 bit value. Note. For all other ROM accesses the ROM is
word addressable. However, for this instruction, the ROM is byte addressable.

3.3.4.1.15 WRCODE

Syntax
N/A

Description
N/A

3.3.4.2 CPU Stack Operation Instructions

The VNC2 operates a stack in hardware with a dedicated stack pointer.

Copyright © 2012 Future Technology Devices International Ltd. 105

Vinculum Il User Guide
. AN_151 User Manual Version 2.0.0
Chlp Clearance No.: FTDI# xxx

FTDI Document Reference No.: FT_000289

3.3.4.2.1 PUSHF

Syntax
PUSHF

Description

Push the flags register to the stack (2 bytes).

3.3.4.2.2 POPF

Syntax
POPF

Description

Retrieve the flags register from the stack (2 bytes).

3.3.4.2.3 SP_INC

Syntax
SP_INC $b

Description

Increment the stack pointer (SP) by an 8-bit constant value. This has the effect of removing entries
from the stack.

3.3.4.2.4 SP_DEC

Syntax
SP_DEC $b

Description

Decrement the stack pointer (SP) by an 8-bit constant value. This creates additional uninitialised
entries on the stack.

3.3.4.2.5 SP_ WR#

Syntax
SP_WR# da $b

Description

Copy the value from a specified memory address to a specified offset from the stack pointer SP. The
offset may be up to 255 bytes.

3.3.4.2.6 SP_RD

Syntax
SP_RD# da $b

Description

Read the memory location at a specified offset from the stack pointer SP, and copy that value to a
specified memory address. The offset may be up to 255 bytes.

3.3.4.2.7 SP_STORE

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 106

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

SP_STORE da

Description

Store the stack pointer (WORD) value at a specified memory address. The di bit determines whether
the associated stack pointer store is direct or indirect.

3.3.4.2.8 SP_LOAD

Syntax
SP_LOAD $w
Description

Load a constant value to the stack pointer register (SP).

Syntax
SP_LOAD sa
Description

Load the stack pointer with the WORD value at a specified memory location. The si bit determines
whether the associated stack pointer load is direct or indirect.

3.3.4.2.9 PUSH#

Syntax
PUSH8 $b
Description
Decrement the SP by 1 and Store a BYTE constant d[7..0] on the stack at the memory location
pointed to by the new SP.
Syntax
PUSH16 $w
Description
Decrement the SP by 2 and store a WORD constant d[15..0] on the stack at the memory location
pointed to by the new SP.
Syntax
PUSH32 $d
Description
Decrement the SP by 4 and store a DWORD constant d[31..0] on the stack at the memory location

pointed to by the new SP.

Syntax
PUSH# sa
Description

Decrement the SP by 1(BYTE), 2(WORD), or 4(DWORD) and load a BYTE, WORD or DWORD value from
memory, and store it at the new SP value.

The si bit determines if the memory load is direct or indirect.

3.3.4.2.10 POP

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 107

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

POP# da

Description

Load a BYTE, WORD or DWORD value from the address pointed to by the stack pointer. Store the
value to a specified memory address. Increment the stack pointer SP by 1, 2 or 4.

The di bit determines if the memory write is direct or indirect.

3.3.4.3 CPU Memory Operation Instructions

The VNC2 has general purpose memory commands to copy data from ROM to memory or between
memory locations.

3.3.4.3.1 LD#

Syntax
LD8 da $b
Description
Store a BYTE constant at a memory address. The di bit determines whether the memory write is
direct or indirect.
Syntax
LD16 da $w
Description
Store a WORD constant at a memory address. The di bit determines whether the memory write is
direct or indirect.
Syntax
LD32 da $d
Description

Store a DWORD constant at a memory address. The di bit determines whether the memory write is
direct or indirect.

3.3.4.3.2 CPYROM

Syntax
CPYROM da sa $sc
Description

Copy a specified number of words from ROM to memory. The sc[7..0] field specifies the number of
words to copy. The di field determines whether the final memory address is the address specified by
da[13..0] or the address stored at that memory address. The sa[13:0] address is an address where
the ROM memory location is read from.

3.3.4.3.3 CPYMEM

Syntax
CPYMEM da sa $sc
Description

Copy a specified number of bytes from memory to memory. The sc[7..0] field specifies the number of
bytes to copy. The si field determines whether the source memory address is the address specified
by da[13..0] or the address stored at that memory address, while the di field determines the final
memory address. The ud bit indicates direction (1 for up and O for down).

Copyright © 2012 Future Technology Devices International Ltd. 108

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.3.4.4 CPU Bitwise Shift Operation Instructions

There are 4 types of bitwise shift operations on the VNC2. These are shift, arithmetic shift, rotate
and rotate with carry which can be performed on 8, 16 or 32 bit values.

Note: Whereas these operations can shift from O to 31 places, the RORC and ROLC instructions
only shift by one place. When a value other than 1 is specified for RORC or ROLC, a rotate of 1 will
always be performed.

3.3.4.4.1 SHR#

Syntax

SHR# da $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.
Syntax

SHR# da sa $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.
Syntax

SHR# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.
Syntax

SHR# da sa ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.2 SHL#

Syntax
SHL# da $sc
Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax
SHL# da sa $sc

Copyright © 2012 Future Technology Devices International Ltd. 109

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.
Syntax

SHL# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.
Syntax

SHL# da sa ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.3 SAR#

Syntax

SAR# da $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.
Syntax

SAR# da sa $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.
Syntax

SAR# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

SAR# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is

Copyright © 2012 Future Technology Devices International Ltd. 110

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.4 SAL#

Syntax

SAL# da $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.
Syntax

SAL# da sa $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.
Syntax

SAL# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.
Syntax

SAL# da sa ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.5 ROR#

Syntax
ROR# da $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by

op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.
Syntax

ROR# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Copyright © 2012 Future Technology Devices International Ltd. 111

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Syntax
ROR# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.
Syntax

ROR# da sa ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.6 ROL#

Syntax
ROL# da $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.
Syntax
ROL# da sa $sc
Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.
Syntax

ROL# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax
ROL# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.7 RORC#

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 112

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

RORC# da $sc

Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.
Syntax

RORC# da sa $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.
Syntax

RORC# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.
Syntax

RORC# da sa ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.8 ROLC#

Syntax

ROLC# da $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.
Syntax

ROLC# da sa $sc
Description
Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.
Syntax

ROLC# da ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is

Copyright © 2012 Future Technology Devices International Ltd. 113

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.
Syntax
ROLC# da sa ta
Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,

and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.5 CPU Logic Operation Instructions

The VNC2 supports various bitwise logic commands. Logic operations can be performed on 8, 16 or
32 bit values.

3.3.4.5.1 AND#

Syntax
AND8 da $b
Description

Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.
Syntax

AND16 da $w
Description

Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

AND32 da $d
Description

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax
AND# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.
Syntax

AND# da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value

Copyright © 2012 Future Technology Devices International Ltd. 114

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.5.2 OR#

Syntax

OR8 da $b
Description
Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.
Syntax

OR16 da $w
Description
Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

OR32 da $d
Description

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

OR# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.

Syntax
OR# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value
loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.5.3 XOR#

Syntax
XOR8 da $b
Description

Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.

Copyright © 2012 Future Technology Devices International Ltd. 115

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Syntax
XOR16 da $w
Description

Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

XOR32 da $d
Description

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

XOR# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.
Syntax

XOR# da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value
loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.5.4 XNOR#

Syntax
XNOR8 da $b
Description

Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.
Syntax

XNOR16 da $w
Description

Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax
XNOR32 da $d

Description

Copyright © 2012 Future Technology Devices International Ltd. 116

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax
XNOR# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.

Syntax
XNOR# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value
loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6 CPU Arithmetic Operation Codes

The VNC2 supports arithmetic operations performed on 8, 16 or 32 bit values.

Operand Order

Arithmetic operations are calculated using two or three operand instructions.

2 Operands

For two operand instructions the first operand is both the destination and the first term in the
expression. The second operand is the second term in the expression.

This can be represented as:

a <- a operation b
Where the equivalent machine instruction would be:

operation a b
3 Operands

The first operand is exclusively for the result. The second and third are the first and second terms in
the expression.

To write this as an expression:

a <- b operation c
Where the equivalent machine instruction would be:

operation a b ¢

3.3.4.6.1 ADD#

Syntax
ADD8 da $b
Description

Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 117

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

ADD16 da $w

Description
Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

ADD32 da $d
Description
Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.
Syntax

ADD# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.
Syntax

ADD# da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.2 ADC#

Syntax

ADC8 da $b
Description
Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

ADC16 da $w
Description
Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

ADC32 da $d
Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di

Copyright © 2012 Future Technology Devices International Ltd. 118

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

bit determines whether the associated memory load/store is direct or indirect.

Syntax
ADC# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.
Syntax

ADC# da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.3 SUB#

Syntax

SUB8 da $b
Description
Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

SUB16 da $w
Description
Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

SUB32 da $d
Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax
SUB# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax
SUB# da sa ta

Copyright © 2012 Future Technology Devices International Ltd. 119

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.4 SBC#

Syntax

SBC8 da $b
Description
Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

SBC16 da $w
Description
Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

SBC32 da $d
Description
Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.
Syntax

SBC# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.
Syntax

SBC# da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.5 MUL#

Syntax
MJUL16 da $w

Description

Copyright © 2012 Future Technology Devices International Ltd. 120

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

MUL32 da $d
Description
Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.
Syntax

MUL# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

MUL# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.6 DIV#

Syntax
Dl V16 da $w
Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

Dl V32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax
Dl V# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Copyright © 2012 Future Technology Devices International Ltd. 121

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Syntax
Dl V# da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.7 REM#

Syntax

REML6 da $w
Description
Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.
Syntax

REM32 da $d
Description
Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.
Syntax

REM# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.
Syntax

REM¢ da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.8 NEG#

Syntax
NEG16 da $w
Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 122

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

NEG32 da $d

Description
Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.
Syntax

NEG# da sa
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.
Syntax

NEG# da sa ta
Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.9 INC#

Syntax
I NC# da $b

Description

Increment the BYTE, WORD, or DWORD value at the specified memory location. The di bit determines
whether the memory access is direct or indirect.

3.3.4.6.10 DEC#

Syntax
DEC# da $b
Description

Decrement the BYTE, WORD, or DWORD value at the specified memory location. The di bit determines
whether the memory access is direct or indirect.

3.3.4.7 CPU Bitwise Operation Instructions

This class of instruction performs bit-wise comparisons and inversion. Bit operations can be made
with 8, 16 or 32 bit values.

3.3.4.7.1 BTST#

Syntax
BTST# sa $b [fl]
Description

Load a BYTE, WORD, or DWORD value from memory. Copy the logic value of the bit specified by b
[4..0] to the EMCU flag specified by the fl[3..0] bits. The si bit determines whether the memory
access is direct or indirect. Default flag to change is the Z flag.

Copyright © 2012 Future Technology Devices International Ltd. 123

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.3.4.7.2 BCLR#

Syntax
BCLR# da $b
Description

Load a BYTE, WORD, or DWORD value from memory. Set the bit specified by b[4..0] to zero, and
store the result in the same memory location. The di bit determines whether the memory access is
direct or indirect.

3.3.4.7.3 BSET#

Syntax
BSET# da $b
Description

Load a BYTE, WORD, or DWORD value from memory. Set the bit specified by b[4..0] to one and store
the result in the same memory location. The di bit determines whether the memory access is direct
or indirect.

3.3.4.7.4 INV#

Syntax
I NV# da $b
Description

Invert the BYTE, WORD, or DWORD value at the specified memory location. The di bit determines
whether the memory access is direct or indirect.

Syntax

I NV# da sa

Description

Load the BYTE, WORD, or DWORD value at a specified memory location, invert it, and store to
another location. The di and si bits determines whether the associated memory access is direct or
indirect.

3.3.4.7.5 CPY#

Syntax

CPY# da sa
Description

Load the BYTE, WORD, or DWORD value at a specified memory location, copy it, and store to another
location. The di and si bits determines whether the associated memory access is direct or indirect.

3.3.4.8 CPU 1/0 Operation Instructions

The VNC2 supports commands to perform operations on 1/0 ports.

3.3.4.8.1 OUTPORT

Syntax
OUTPORT io $b

Description

Copyright © 2012 Future Technology Devices International Ltd. 124

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Write the constant BYTE value b[7..0] to the 1/0 port specified by io[8..0]

Syntax
OUTPORT io0 sa
Description

Copy a BYTE value from memory to the 1/0 port specified by io[8..0]. The si bit determines whether
the memory load/store operation is direct or indirect.

3.3.4.8.2 ANDPORT

Syntax
ANDPORT i o $b
Description

Read a BYTE value from the 1/0 port specified by io[8..0]. AND the value with the BYTE constant b
[7..0] and write the result back to the same 1/0 port.

Syntax
ANDPORT i o da $b
Description

Read a BYTE value from the 1/0 port specified by io[8..0]. AND the value with the BYTE constant b
[7..0], and write the result to a memory location. The di bit determines whether the memory write
operation is direct or indirect.

3.3.4.8.3 ORPORT

Syntax
ORPORT i0 $b
Description

Read a BYTE value from the 1/0 port specified by io[8..0]. OR the value with the BYTE constant b[7..0]
and write the result back to the same 1/0 port.

Syntax
ORPORT i0 da $b
Description

Read a BYTE value from the 1/0 port specified by io[8..0]. OR the value with the BYTE constant b
[7..0], and write the result to a memory location. The di bit determines whether the memory write
operation is direct or indirect.

3.3.4.8.4 INPORT

Syntax
I NPORT i 0 da
Description

Copy a BYTE value from the 1/0 port specified by io[8..0] to memory. The di bit determines whether
the memory load/store operation is direct or indirect.

3.3.4.8.5 PORTTST

Syntax
PORTTST io $b [fl]

Copyright © 2012 Future Technology Devices International Ltd. 125

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description

Read a BYTE value from the 1/0 port specified by io[8..0] and copy the value of the bit specified by b
[3..0] to the EMCU flag specified by fl[3..0] Default flag to change is the Z flag.

3.3.4.9 CPU Comparison Instructions

The compare instruction compares the sa value to an immediate or da value. The sa parameter is
used as the ‘A’ value and the immediate or da parameter is the ‘B’ value in the condition.

3.3.4.9.1 CMP#

Syntax

CMP8 sa $b
Description
Load the BYTE value at a specified memory address, and compare to a BYTE constant b[7..0], setting
the O S C and Z flags according to the result. The si bit determines whether the memory reference is
direct or indirect.
Syntax

CMP16 sa $w
Description
Load the WORD value at a specified memory address, and compare to a WORD constant w[15..0],
setting the O S C and Z flags according to the result. The si bit determines whether the memory
reference is direct or indirect.
Syntax

CMP32 sa $d
Description
Load the DWORD value at a specified memory address, and compare to a DWORD constant d[31..0],
setting the O S C and Z flags according to the result. The si bit determines whether the memory
reference is direct or indirect.
Syntax

CMP# sa da
Description

Load two BYTE, WORD or DWORD values from two memory addresses, and compare them, setting
the O S C and Z flags according to the result. The si and di bits determine whether the associated
memory reference is direct or indirect.

3.3.4.10 CPU Program Flow Instructions

Program flow is controlled by straight jumps or calls, indirect jumps and calls or conditional jumps
and calls. Conditional jumps and calls are made either on flags states or on comparison results.

3.3.4.10.1 JUMP

Syntax
JUMP ro
Description

Load the program counter PC with the value specified by ro. The next instruction will use the new
address, with the effect that program execution jumps to that location.

Copyright © 2012 Future Technology Devices International Ltd. 126

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Syntax
JUWP (sa)
Description

Load the program counter PC with the value specified by sa. The next instruction will use the new
address, with the effect that program execution jumps to that location.

3.3.4.10.2 JGT

Syntax

JGT ro
JGTS ro

Description

If the flags indicate a greater than result, jump to the rom address (ro), otherwise continue to the
next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an
S on the assembly instruction.

3.3.4.10.3 JGE

Syntax

JGE ro
JGES ro

Description

If the flags indicate a greater than or equal to result, jump to the rom address (ro), otherwise
continue to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is
indicated by an S on the assembly instruction.

3.3.4.10.4 JLT

Syntax

JLT ro
JLTS ro

Description

If the flags indicate a less than result, jump to the rom address (ro), otherwise continue to the next
address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an S on
the assembly instruction.

3.3.4.10.5 JLE

Syntax

JLE ro
JLES ro

Description

If the flags indicate a less than or equal to result, jump to the rom address (ro), otherwise continue
to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated
by an S on the assembly instruction.

3.3.4.10.6 JNfI

Syntax
IJNfl ro

Copyright © 2012 Future Technology Devices International Ltd. 127

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description

If the flag specified by fl[3..0] is zero, then jump to the ROM address RO, otherwise continue to the
next instruction.

3.3.4.10.7 Jfl

Syntax
Jfl ro
Description

If the flag specified by fl[3..0] is set then jump to the ROM address RO, otherwise continue to the
next instruction.

3.3.4.10.8 CALL

Syntax
CALL ro
Description
Store the value of the program counter + 2 (the address of the next instruction) in the memory
address pointed to by SP. Decrement SP by 3. Load the new ROM address RO to the program
counter PC, and continue execution from the new address.
Syntax
CALL (sa)
Description

Store the value of the program counter + 2 (the address of the next instruction) in the memory
address pointed to by SP. Decrement SP by 3. Load the new ROM address from the memory location
specified by sa to the program counter PC, and continue execution from the new address.

3.3.4.10.9 CALLGT

Syntax
CALLGT ro
CALLGTS ro

Description

If the flags indicate a greater than result, jump to the ROM address (ro), otherwise continue to the
next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an
S on the assembly instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.10 CALLGE

Syntax
CALLCGE ro
CALLGES ro

Description

If the flags indicate a greater than or equal to result, jump to the ROM address (ro), otherwise
continue to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is
indicated by an S on the assembly instruction.

Copyright © 2012 Future Technology Devices International Ltd. 128

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.11 CALLLT

Syntax
CALLLT ro
CALLLTS ro

Description

If the flags indicate a less than result, jump to the ROM address (ro), otherwise continue to the next
address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an S on
the assembly instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.12 CALLLE

Syntax
CALLLE ro
CALLLES ro

Description

If the flags indicate a less than or equal to result, jump to the ROM address (ro), otherwise continue
to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated
by an S on the assembly instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.13 CALLNflI

Syntax
CALLNfI ro

Description

If the EMCU flag specified by fl[3..0] is zero, then branch to the new address RO storing the return
address, otherwise continue to the next instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.14 CALLTI

Syntax
CALLfl ro

Description

If the EMCU flag specified by fl[3..0] is set, then branch to the new address RO storing the return
address, otherwise continue to the next instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

Copyright © 2012 Future Technology Devices International Ltd. 129

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.5 Error Reference

Assembler error messages take the following form:

<filename> |line <line nunber>: (error|warning|info) A<code> <description>

Error codes take one of the following values.

Error codes Description

1000 neither instruction nor directive
1001 invalid directive syntax.

1002 not supported directive

1003 not supported instruction

1004 instruction format not supported
1005 syntax error.

2000 missing .ENUM directive.

2001 invalid line number.

2002 missing ENUM name.

2003 missing .STRUCT directive.
2004 missing struct name.

2005 struct/union name mismatch.
2006 missing .UNION directive.

2007 missing union name

2008 function name mismatch.

2009 enum name mismatch

2010 missing enumerators

2011 missing struct/union members
2012 missing .FUNCTION directive
2013 missing .FUNC_END directive
2014 missing function name.

2015 missing parameter name

2016 missing datatype name

2017 missing function return type
2018 invalid size specified.

2019 invalid array dimension.

2020 invalid pointer dimension

2021 invalid signed/unsigned flag.
2022 invalid array flag.

2023 invalid pointer flag.

2024 duplicate return type

2025 missing .DATA_DEF directive.
2026 missing struct initialized value/s.
2027 multiple global declaration.
3000 failed to assemble instruction
3001 instruction not allowed in data section
3002 unknown section '%s"

3003 invalid section type

Copyright © 2012 Future Technology Devices International Ltd. 130

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3004 invalid section flag
3005 symbol not yet declared '%s".
3006 symbol not found in string table
3007 invalid filename
3008 missing .FILE directive.
3009 failed to create object file.
3010 symbol does not exist in .symtab
3011 symbol does not need to be relocated
3012 unresolved symbol '%s’
3013 invalid ORG value, address overlaps
3014 indirect access is not allowed.
3015 value is greater than the operand size.
3016 duplicate symbol
3017 directive not allowed in text section.
3018 directive is only allowed in text section.
4000 unknown datatype '%s’
4001 failed to create .debug_abbrev section.
4002 failed to create .debug_info section.
5000 malloc() failed
5001 internal error
5002 failed to create .symtab section.
5003 failed to create .rel.text section.
5004 has reached the maximum number of sections.
5005 no entry in symtab yet.
5006 unable to open file '%s".
5007 unable to open log file.

Example

An error for an undefined label in line 45 will give the following message.
test.asmline 45: (error) C1200 undefined | abel

3.4 VinL Linker

The linker supports:

e archive file processing for linking pre-built libraries

o DWARF2 compliant debug file generation

e object file in ELF format

e output of ROM file for programming and BIN file for debugging

e checksum generation for ROM files

Copyright © 2012 Future Technology Devices International Ltd. 131

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

RAM/ROM
File

Lib1.a
Archive
Tool Lib2.a
"7 LINKER
| Vinculum-li
F5.0bj = R —
w3 (VInL)
|| F3.obj |
ASM F2.o0bj
e Debugger
B Bin File
3.4.1 Linker Command Line Options
The VNC2 Linker command line options are listed below.
VinL [options] [file ...]
Option Description
-e synbol Define Entry Symbol.
-k bytes Set size of stack in bytes
-0 Enable optimisations in the linker (for object files only)
-d level Specify the debug level for the linker output
-o filenane Set the output filename and path
File extensions will be appended to this filename
-uU Specify that full archives are to be included.
-h Print Command help message of linker options
-V Verbose flag
-V Version number
- -no- | oader User defined program loader
-B Image offset in ROM specified in words

Default is 0x3CO

-T Text section offset in ROM specified in words

Default is zero

-D Data section offset in RAM specified in bytes

Default is zero

Examples

How to view the Linker options?
VinL -h

Application name followed by option name while viewing command line option

How to see version number of linker?
VinL —-v

Copyright © 2012 Future Technology Devices International Ltd. 132

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

How to Execute Object files?

Vi nL obj ectl.obj object2.obj bootl oader.obj --no-Ioader

Linker Application name followed by object files.

How to enable linker optimization?
VinL -O
How to generate the output file?

Vi nL obj ect 1. obj —o=c:\object
or

Vi nL obj ect 1. obj —o=object

Command line specifying an output file of "object" will generate the output files "object.bin" and
"object.rom".

How to Use different commands in linker?

All the command mentioned here are based on GPIOKitt sample project.
¢ How to specify data segment start address? Default Data Segment Start Address is 0x0

VinL. exe kernel.a gpio.a Kitt.obj -U -D 0x20 -0 Kitt

* How to specify Text Section Start Address? Default is 0xO.
VinL. exe kernel.a gpio.a Kitt.obj -U-T 0x10 -0 Kitt

* How to specify the Code segment Start Address? Default Code Start Address is 0x3CO. Please
contact customer support as there are implications with moving the start address of the code.

Vi nL. exe kernel.a gpio.a Kitt.obj -U -B 0x400 -0 Kitt

* How to specify user defined boot loader and what care needs to be taken?

VinL. exe kernel.a gpio.a Kitt.obj bootloader.obj -e Start --no-loader -U -0 Kitt

If you specify the start symbol as "Start”. It must also defined as that will be the code entry point.
The default entry symbol is "main".

o How to specify the stack size?

VinL. exe kernel.a gpio.a Kitt.obj -k 0x200 -U -D 0x20 -B 0x400 -0 Kitt

* How to include archive files?

To include archive file -U option must be provided, failing to do so will result in an error being
reported.

3.4.2 Memory and Segment
FLASH - ROM Memory

Text Segment

RO Segment

RAM Memory

Copyright © 2012 Future Technology Devices International Ltd. 133

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Data Segment

BSS Segment

Stack Segment

TEXT Segment :

This is the code segment. All C Functions, Procedures etc. are merged together and created as one
text segment. Assembler replaces C functions with CPU specific instructions, so all CPU instructions
are part of this segment. This Segment is part of FLASH(ROM) Memory in Vinculum I1.

DATA Segment :

This is the DATA segment. All Global Variables, Structures etc. are merged together and created as
one data segment. DATA segment is the fixed memory locations reserved for global variables of all
type. i.e. char, int, long etc.

BSS Segment :

This is the DATA segment. All uninitialised Global Variables, Structures etc. are merged together and
created as one BSS segment. BSS segment is same as DATA segment, is the fixed memory locations
reserved for uninitialised global variables of all type. Program loader (Part of boot loader)initializes
this segment

RO Segment :

This is the DATA segment. All Global Variables, Structures etc. are merged together and created as
one data segment. DATA segment is the fixed memory locations reserved for global variables of all
type. i.e. char, int, long etc

DEBUG Segment :

This is the Debug segment. Debug information for all sections, variables are part of this section.
Debug segment is not the part of physical memory so it is not part of CPU memory map. This
segments are used by debugger for providing debug information.

3.4.3 Map File

Linker Map file contains following information

¢ RAM and ROM size of CPU

¢ Version info of Linker and Loader

e Start address of segment and size of each segment

¢ Symbol information (Address of symbol, symbol name,symbol type, memory type, filename and size

of symbol)

Example for Linker Map File

Copyright © 2012 Future Technology Devices International Ltd. 134

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

CPU_CORE = VC2,

3.4.4 Archive

Future Technology Devices International Limited {c) 2007,

CPU_RAM_SIZE= 16 KB, CPU_ROM_SIZE=2%56 KB

Linker Wersion = ¥1.100000 Loader Versiom = V1.000000
Fri How 20 13:53:13 2009

SEGHENT_MAP

Start Address Segmnent Nane

ooooon | text oooooooolz
000012 . dataFlash 000000001le
000000 . dataRAM 000000001le
00001se .bss oooooooooo

File

411 Right= Reserwved

SYH ADDRESS FUBLIC SYM HAME SYH TYPE HEH TYPE FILE HAMWE SYH SIZE
HOTE:L=LABLE F=FUHCTION 0=FLASH and 1=E&H

000000 main F 0 test.obj ooaoon?
000007 updateResult F 0 test.obj goool
000008 updateResultl F 0 test.obj goool
000000 *eax L 1 test.obj 00004
000004 4ebx T 1 test.obj 00004
000008 Mecx I 1 test.obj 00004
00000c %r0 I 1 test.obj 00004
000010 %rl T 1 test.obj 00004
000014 %r2 I 1 test.obj 00004
000018 %r3 T 1 test.obj 00004
00001c a T 1 test.obj o000l
00001d Result L 1 test.obj 00001

VinL linker will support only archive files generated by VinAr tool.

Features

Following is the feature list of archive support in toolchain. This list includes items for both tool and

linker support.
Feature

Selective Archive
extraction

Full archive
extraction

Command line
options

Name Mangling

Debug
information
support

Tool compatibility

Export symbol
creation

Description

Selective archive extraction uses
technique to import symbol based on the
symbols required as per the relocation
from application. Global Symbol table
created by archive tool will be used to
extract the data.

This is an option which by default is
disabled

Command line option to archive tool

To protect internal working and hide
internal functions from user

Not Supported

Archive tool is only compatible with FTDI’s
toolchain. Linker will support archives
generated by Archive tool only.

This symbols will be created by archive
tool.

Benefit/Reason

This removes need of
including code first and
then removing. This will
help to reduce binary size

Faster inclusion time

Ease of use

Security of code

Not possible as source
code debugging is not
allowed

Security of IP and
software

Copyright © 2012 Future Technology Devices International Ltd.

135

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.4.5 Error Reference
Linker error messages take the following form:

<filename>: (error|warning|info) L<code> <description>

Error codes take one of the following values.

Error codes Description

0001 error in command line argument
0002 memory overflow

0003 error invalid parameter

0004 start symbol missing

0005 symbol without section

0006 symbol redefined (symbol name)
0007 symbol allocation error

0008 file allocation

0009 section not supported

0010 error in file open

0011 error in memory allocation

0012 error in parameter

0013 error in parameter section information
0014 error in parameter symbol data
0015 error in parameter in relocation data
0016 error in updating linker variables
0017 invalid archive file

0018 -U option is missing for archive

0019 archive symbol is missing (symbol name)
0020 syntax error

0021 error in maximum code limit

Error Code: command line argument Error

This error means one or more command line parameters to the linker is wrong.
test.obj : (error) L0001 error in conmand |ine paraneter

Error Code: memory overflow

The generated ROM code was too large to fit into the Flash memory on the device.

test.obj : (error) L0002 nenory overflow if text/data/bss sections are large to
corrupt with any of the other section

Error Code: invalid parameter

test.obj : (error) L0003 invalid paranmeter (generated due to invalid elf format)

Error Code: start symbol missing

An error for a program which does not have a main() function will give the following message. or if
it's user defined

start symbol missing then this error will be issued

test.obj: (error) L0004 start synmbol m ssing

Error Code: symbol without section

Copyright © 2012 Future Technology Devices International Ltd. 136

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxXx

Internal error thrown due to incorrect elf format.

Error Code: symbol redefined

Internal error thrown due to incorrect elf format.

Error Code: symbol allocation error

Internal error thrown due to incorrect elf format.

Error Code: file allocation

Internal error thrown due to incorrect elf format.

Error Code: section not supported

Internal error thrown due to incorrect elf format.
Error Code: error in file open
File provided as an input parameter is not found/corrupted.

Error Code: error in memory allocation

Internal error thrown due to incorrect elf format.

Error Code: error in parameter

Internal error thrown due to incorrect elf format.

Error Code: error in updating linker variables

Internal error thrown due to incorrect elf format.

Error Code: error in parameter in relocation data

A function or variable was declared (prototyped) and called but the linker could not find a definition
for the function or variable.

test.obj: (error) LOO15 error in paranmeter in relocation data notReal Functi on

Error Code: archive file is not valid and wrong/duplicate archive symbol
This error will be generated if generated archive file is not standard FTDI format.

Error Code: -U option is missing for archive

Command line parameter -U is required since an archive file was used as an input file.

Error Code: archive symbol missing

Internal error for corrupt archive file.

Error Code: syntax error

Internal error for corrupt archive file.

Error Code: maximum code limit

if code size increases beyond FLASH ROM size.

Copyright © 2012 Future Technology Devices International Ltd. 137

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxXx

3.4.6 Special VNC2 Reference

Certain symbols are defined in the linker which are available to a user program. The ROM file format
includes a data area which can be programmed via a command line application (VinUser Customiser),
a program area which is reserved for future used, a build timestamp and a checksum.

The following are symbols defined in ROM which may be read by a program.

userDataArea 8 word array for user extern rom char userDataArea[16]
programmable area extern rom short userDataArea[8]
extern rom long userDataArea[4]

Start Label for start of program
progDataArea 8 word array for program data |reserved
area
progSize 2 word size of program ROM extern rom int progSize[1]

(first 2 words of progDataArea)

This size specified includes the
timestamp and checksum.

The data accessible from the ROM in this case can only be accessed as an array.

The locations of these data areas (in word offsets) in the ROM file is shown in the following table.
0x00 OxOF reserved

0x10 0x11 progDataArea - progSize

0x12 Ox17 progDataArea - reserved

0x18 Ox1F userDataArea

When read with the above method, the progSize word is encoded. To convert an int received from
the progSize array to the actual ROM size, swap the order of the first and second bytes and then
swap the third and fourth bytes. The code example shows how to convert to the correct format.

int size;
size = (progSize[0] & 0x00ff0O0ff) << 8;
size | = (progSize[0] & OxffO0off00) >> 8;

When the size is read from a ROM file then the byte order is little endian format. The byte swapping
is only required because of the internal architecture of the VNC1.

In addition the ROM file is protected by a build date stamp and checksum at the end of the file. The
locations (in word offsets from the end of the file) are shown in the table below.

0x00 0x00 Checksum

0x03 0x01 Timestamp, 6 bytes:

0x04 High byte - day of month

0x04 Low byte - month

0x03 High byte - year of century

0x03 Low byte - hour (24 hour format)
0x02 High byte - minutes

0x02 Low byte - seconds

There is no direct access to the checksum or timestamp using rom arrays. It is possible to access the
timestamp and checksum through the Flash Access APIl. Note that the checksum value accessed will
be encoded in the same was as the progSize value.

The checksum is calculated over the whole of the ROM file excluding the timestamp and checksum
areas. i.e. the start of the file to the file size - 4 words. The following code example can be used for
generating or verifying the checksum.

/1 buffer - ROMfile data
/Il size - size of ROMfile data in bytes (including checksum and ti mestanp)
i nt generateChecksum char *buffer, unsigned |ong size)

Copyright © 2012 Future Technology Devices International Ltd. 138

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

int checksum = 0;
int dword = O;
unsi gned int count = O;

+ sizeof(int)) > size))

/'l special handling for file not finishing on int boundary

(size % sizeof(int)));

sizeof (int));

size -= 8;
for (count = 0; count < size; count += sizeof(int))
{
if (((size %sizeof(int)) !'=0) && ((count
{
mencpy(&word, &message[count],
}
el se
{
mencpy(&iword, &message[count],
}
dword = dword + 0x00000001;
checksum = checksum + dword;
}

checksum = ((checksum & 0x0000ffff) + ((checksum >> 16) & 0x0000ffff));

return checksum

}

Examples

To read in the user data area:

extern rom char userDat aArea[16];

voi d get ProgSi ze(char *buff16byte)

{ .
int x;
for (x=0; x < 16; x++)
{
buf f 16byt e[x] = user Dat aArea[x] ;
}
}

To query the program size:

extern romint progSize[1];

int getProgSize()

{ . .
int size;
size = (progSize[0] & O0x00ffO0Off) << 8;
size | = (progSize[0] & OxffOOff00) >> 8;
return size;
}
3.5 VinIDE

The Integrated Development Environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development. The IDE consists of:

e A source code editor
e A compiler
e Build automation tools

e A debugger

3.5.1 About VinIDE

VIinIDE is an Integrated Development Environment that can be used to create user applications for
the VNC2 chip. It has its own built-in source editor to help you write your own source files. It also

Copyright © 2012 Future Technology Devices International Ltd. 139

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide

Clearance No.: FTDI# xxx

Chip AN_151 User Manual Version 2.0.0

allows you to build your source files into a binary output by using the integrated tools in the

toolchain namely:

e The Compiler (VinC.exe)

e The Assembler (VinAsm.exe)
e The Linker (VinL.exe)

e The Debugger (VinDbg.dll)

It also allows the user to manage the files in a project.

3.5.2 The User Interface

The IDE is divided up into 6 parts : the Tabbed Toolbar, the Source Code Editor, the Project

Manager, the Messages Window, the Watch list Window, and the Memory Window.

The TabbedToolbar

s bl B 2L e e e
s AR e Seviis Aesw OGR4 Wev Oe S Sisaas Sespad ¢
o T . e ——
e rr— g -
naas 160, 490T]_code = Wod_T0CTL UARY_SET_NAUD_RATES
e et el o ioch.baf_in. baud_rate = TART BATD 9630:
The Watchlist ™ 1 I w_ieamia .
e
window o, L4eul_dee = VOR_TOCTE UART BET_FLOW COMTRGL . 4
L. pETAE T !"_'.-C_.::. CTS:
Meer
e 4
pa— The Memory 4 The Source Editor
b 3 b buf_in.pasam = TRET_PRAITY_HO
| snsess Windaow BGOTL INDEFT, CUTE_Laati
| s
|| e
L h
| P " wos_Ssv_write (sOazc, Bails, iX, ele’ip
| LI 182 & 1A LT]
A L 1R} | whilw [Lhz
| g The Breakpoints
5 - Window |
[y — I sl e x|
Campeg 11 ey hadm
| | The Messages Window St
it Bt e — .
(BT e
‘ Pelereing
| —— >
|

3.5.2.1 The Tabbed Toolbar

The Tabbed Toolbar is context-sensitive, automatically displaying the functions relevant to what you
are doing at the moment. Functions that cannot be used in the current context are greyed out.

@ File Edit View Build Debug

, l B S, ' | I ?(i . H H LI.,J F]-T‘ﬁil _
Open MNew Save SaveAs Save All Close 4dd Remowve Open Ew Modify Save SaveAs Close . Options
File: L Project Prink Program

3.5.2.1.1 The File tab

The File tab group is a collection of file 10-related commands that is available for the user. Below are

the commands on the File tab group.

Copyright © 2012 Future Technology Devices International Ltd.

140

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

w File Edit Wiew Build Debug
| - , | Tk,
| =] W (= '
1 BRSO RSP J Wl e L 2
Open Mew Sawve Sawve As Save All Close Add Remaove Open 2o Modify Sawe Save As Close] Options
File Project Print Program
QFile Group
e Open

Opens an existing file in the editor
e New
Adds a new file to the current project
e Save
Saves the active file in the editor to the disk
e Save As
Saves, in a different filename, the active file on the editor
e Save All
Saves the project as well as all the edited files
e Close
Closes the active file in the editor
o Add
Adds a an existing file to the current project
e Remove
Removes the active file from the current project
QProject Group
e Open
Opens a project. Will close the any currently open project first.
e New

Creates a new project using the Application Wizard. Choose from Application Wizard, Vinco
Wizard or a blank template project.

o Modify

Opens the Application Wizard to modify an existing project
e Save

Saves the project to the disk

e Save As

Saves the project on a different filename

e Close

Closes the project

Copyright © 2012 Future Technology Devices International Ltd. 141

Vinculum 11 User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

3.5.2.1.2 The Edit tab

The Edit tab group is a collection of commands that are used in conjunction with the text editor.
w File Edit View Build Debug
| O 8)M
: "l e
Paste Cut Copy Fimd Replace Undo Redo Options

Clipboard Find Editing Editaor

3.5.2.2 The Source Code Editor

This is the large area below the tabbed toolbar where the contents of the files in the project are
shown and edited. It has many of the features of an advanced text editor such as multiple opened
tabbed files, line highlighting, syntax styling, and many more.

Template.c & | 15

158 * set baud rate to 9600 baud * -
&57 uart_iocb.icctl code = V0OS_IOCTL UART SET BAUD RATE:

158 wart_iocb.buf_ in.baud rate = UART_BAUD_9600;:

159 vos_dew_ioctl (hUart, suarc_ioch):

160 * gat flov control *

el uart_iocb.iectl_code = VO5S_IOCTL UART SET_FLOW_CONIROL:

162 uart iock.buf in.param = UART FLOW RIS CTIS;

163 vaos_dewv_ioctl (hUart, suart _ioch):

164 f* get data bits =/

165 uart iocck.icctl code = VOS5 IOCTL UART SET DATA BITS:

166 uart iocck.buf in.param = URRT DATR BITS B;

187 vas dev_ioctl (hUALt, suart ioch):

isg /* set stop bits */

le9 wart ioch.icctl code = WO5 IOCTL TUART SET STOP BITS;

170 uart ioch.buf in.param = TART STOF BITS 1:

171 vos dev ioctl (hUDarc, éuarc ioch):

172 - set parity * 3

173 wart_ioch.ioctl_code = VOS_IOCTL TUART SET PARTTY:

174 uart iocbh.buf in.param = UART PFARITY WONE:

*75 vos_dev_ioctl (hUlarc, suarc_ioch):

176

177 * main loof

178 d

- _ __________________________| |
$80 vos_dev write (hUart, hello, 12, &len);

181

182 vos_delay msecs{1000): =
FEE] } while [1);

184 (]

Ll n ¥

3.5.2.3 The Project Manager

The Project Manager displays the project in a tree view form showing the files that are included in
the application. Many of the commands in the toolbar can also be quickly accessed in the Project
Manager thru the right click mouse button.

Copyright © 2012 Future Technology Devices International Ltd. 142

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

r

£ GPIOKittvproj - Project Man... L= =[S

4[| GPIOKit
4. | FTDI Libraries
4.~ Libraries
. a4 Kernel
b L | kernel.a
4~ Drivers
: ‘.| | GPIO.a
4~ Indude
4.~ Kernel
' 1| 'u'DSIh
4~ Drivers
. L | GPIO.h
----- || GPIOKitt.c
----- | | GPIOKitt.h
----- || GPIOKitt_iomux.c
----- | | ReadMe.txt

3.5.2.4 The Messages Window

The Messages Window displays the information that are being sent by the other tools such as the
compiler and linker as well as the result from the search commands.

F

i Messages

"Ci\Program Files\FTDIWinculum II ToolchainitoolshiniWinC.exe™ - -0 Debugmain.obj -1 C:WUsers\FTDIDocuments \FTDIFirmware \Samplesiyv 1, 4, ¢
Compiling main.c

0 errors, 0 warnings and 0 informational messages

"Ci\Program Files\FTDIWinculum II ToolchaintoolshiniWinC.exe™ ¢ -0 Debug\AsdiTable.obj -I C:\Users\FTDI \Documents \FTDIFirmware\Samples)
Compiling AsciiTable.c

0 errors, 0 warnings and 0 informational messages

"C:\Program Files \FTDIWinculum II Toolchaintoolshinivinl .exe™ -o DebuglAsciTable kernel.a UART.a vinco_serial.a Debugimain.obj Debug\Asdii
Linking Debug‘AsciTable

ROM_SIZE 41132(0xalac) in bytes for the solution Debugl\AsciTable

3.5.2.5 The Watchlist Window

The Global Watch Window is used to evaluate the global values of variables and expressions..

F

4w Glabal Watch | B [

Mame |'I.|'alue
direction v 0x00
Mopic_iocb Jcoxooooizps> |
1 octl code ot Ox5SF
E--'iren lue Tt Ox7&
5--'va lue 's!' 0x73

Copyright © 2012 Future Technology Devices International Ltd. 143

Vinculum 11 User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

The Local Watch Window is used to evaluate the local values of variables and expressions inside the
function.

F
s Local Watch E@g
MName |'l.|'a|ue
SIUm Written OxRSET 32
Mopic iocb <omooooiens>]
. ipetl code '+ v 0xSE
i “value twt Ox7a
é--purtData twt Ox7a
- '+ v 0xSE
é--'value 'g" 0x73
“direction o' Ox&F
L — —

The Quick Watch window is used to evaluate local or global variables and expressions at any point
of time.

s Quick Watch =TS
Expression :
gpio_joch ’ Add Watch]
Mame Value
Plopic_iochk <0x00001ZD5>
“ioetl code ' ' OuSF
faralue Tart ox7&
I
]
[Ok] ’ Cancel
— E— —y

3.5.2.6 The Memory Window

The Memory Window is used to display and evaluate the current contents of the memory of the
target chip.

Copyright © 2012 Future Technology Devices International Ltd. 144

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

.
2= Memory Window =HECIE X

0123456 7 89 ABCDEF >

Do 000000 a0 00 00 00 00 00 Q0 OO0 00 00 90 00 00 00 00 00 ________________ =m

0000010 a0 00 00 00 00 00 00 00 00 00 00 00 35 00 4B 8E-.- 5.En
O 000020 683 87 &8 74 20 4% 6E &4 75 T3 T4 TZ €% &5 73 20 ight Industries
O 000030 32 30 30 30 00 0B 10 00 00 01 00 32 01 DC 02 E& 2000, nnn
000040 a0 00 00 00 00 08 03 00 00 01 00 D8 00 EZ 00 EE ... iiiaaaa-o-
0000050 a0 00 00 00 00 0Z Ee 00 De 00 01 00 00 00 08 03 ..o
O 000060 a0 00 04 00 00 00 00 00 00 Q00 00 00 00 00 90 00 L.
O 000070 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 | (o iicmemmiemeaaa
000080 a0 00 00 00 OO0 00 00 00 OO0 00 00 00 00 01 90 00 ...
000050 a0 00 00 02 00 00 00 00 00 03 00 00 00 00 90 e ... iaaaa-o-
O 0000AD aod 00 00 00 00 00 00 FE 3B 00 00 00 00 00 90 00 P
O 0000B0 00 00 00 00 00 OO0 00 00 00 00 00 0A 13 00 00 00 | (o iiemeeemeaa
O 0000C0 a0 00 00 00 OO0 00 00 00 00 00 00 00 00 00 90 00 L ...
000000 a0 00 00 00 00 00 02 280 00 00 00 00 00 00 ER 02 ..o
O DOO0ED a0 00 0& 00 00 Z 00 00 0Z 00 00 00 00 00 CE 02
O 0000FD 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 | (o iicmemmiemeaaa
000100 a0 00 Q00 00 00 00 00 00 00 00 00 00 DC 0Z EO 02 .-

0000110 a0 00 00 00 J& &F 73 5F T& &F 73 5F Te &F 73 5F - - --VOS_Vos_wos_
0000120 7& &F 73 5F T7& &F 73 5F T& &F 73 5F Té& &F 73 5F Voda_voa_vod_vog_
0000130 7& 8F 73 5F 78 &F 73 5F V& &F 73 SF V& €F 73 5F Voa_vo3_wod_wvos_
000140 7¢ &F 73 5F 7¢ &F 73 5F 7& &F 723 5F T& &F 73 5F VOS_VoS_vosS_ VoS
0000150 7& eF 73 5F T7&¢ &F 73 5F T&¢ &F 73 5F Te& &F 73 5F voa_wos_wvos_vod_ e

4 [b

L J
3.5.2.7 The Breakpoint Window

The Breakpoint Window is used to display and manage the breakpoint for debugging the project
application

2 Breakpoint List l = | S|

Enable Filename/&ddress LinefLenath
GPIOKitt.c 97
GPIOKitt.C 108
GPIOKitt.C 113

[GPIOKitt.C 118

Note : Any nhumber of breakpoints can be entered but only first three will be enabled and active
during debugging.

3.5.2.8 Managing the Panels

VinIDE is equipped with docking facilities that enables the user to drag the panels and then dock
them to docking sites or stack them on top of one another. The panels could also be pinned to the
sides and be visible only when the mouse hovers on top of their tabs. Or the user could simply hide
the panels and display them whenever so they chooses.

Copyright © 2012 Future Technology Devices International Ltd. 145

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

o Wirculum I DE = =] &
- e e e . o e R e s
e .
= File =] i Prajec Detsg Teaks o
| Praject Managed F Waith
| Prapesties Window ¥ Mewory
o Memagen F Bresipart Lt
| Fieje Dty
= Wakrh Lt | [— y |_| = Tempiate v - Project s, § x_
wpizh | vake 51 = e g o | @ Templaisbe
= undefned == Ao ST a7 FID] Liwavies
8 'l ad & a 3 a—— a Lot
e i 28 i e oy
e .t
= uart.ab
=1 Templane
cs | - Tesplae h
T
EE
113
&7 id appmais (vald) L
£
€2 * NOTE! this ssocion coversd b iy iwar -
= i mil
12 wII_80 =na_1 = HREK_TOHTE EHR; =
T2 SETe A 3ka &1l cutpucs l—l
= x| @13 ¥II gpia_enerl porta_1 = OmEE: pra=TIrT
T canfigore part Munage B
v OG0 1
s (] -rl.l:_-.-n_-:mqnl._. = aEads £ TRET || | Corspiing s Tagiske.c
Ol i TE ¥II 48 ap axe 1 = Ox249; AF amdl e, 1 warngs and 1 rforma kel esiaeges
aiHEH TT wII_fo_op sxo i = el £F Omdl [WiriC mms] :l-n:gl';ﬂﬂhh-:: L7 fsmerang £ i405 bypes wesrasich
TE wIT_so_op_pel_L = OxDa; ¢ andd | o aves, 4 2wl ok
T wIEf 8o ap sre 1 = O=37; 27 omdl | |unking BusTenplse
xO0a040 - YIT i op_axe i = QRZ41 ¢ Gxdl | |Serore, @ memngs e d i remagen
CrTHHES D &1 s End of [OMUY drivwer sespian of
e g
L /* initialire VOS5 configurabls ward
5 E i L 4 = v——
= PrOperTy Windos e e ’ Taxt Edibar 7z
_ Pesdiies: Bettam }
Filename FilkePath Erpble | Figsane/ s en Lre __
Terpate.c C:iSsrcizeaVnDe Tovts Terspla bniere ti Taroiste. n

Please note that when you close the IDE the last states of the panels will be saved and will be used
when the IDE starts again so that the user will not have to rearrange them every time the IDE
starts.

3.5.2.8.1 Docking/ZUndocking Panels

To dock a panel simply click on the title bar and drag to any of the docking zone selectors that will de
displayed. The blue preview highlight will show you where the panel will be docked if you release it.

Copyright © 2012 Future Technology Devices International Ltd. 146

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

e ircuiums § . - : =]
E "
= File e v Pezpect Cebsg Tacis W
 Praject Mansger & Wan.
| | Prapestas Window 4 | Vawry
o Mekiages ¥ | Breaksent Lal
Froges Cetug
= s im | v I I Pemplate visal - ProeciMa 8 X
| nizh_Vahsm 57 | + Thias ix &2 -] at zta iz responmibl x| 4L Tumplata bin
= sk 58 | = = I £ P Lraren
| | . i i K d 2 e, b
| A [T
62 |+ e
Tamplate. |
g3 | - Trmplste_h
L
-]
! (14 -
ET v appmain
BB (1 |
&5 ¢ FOTE: this sectics coversd by TRECH-Snisar *
Ta IS NIIX |
T1 *IT i a1 = MRSH TCMUE ENA: :I.
T F) maks 8 t -r
B W e ﬂ[_u:liu_mz:l{:’cu__:_;.hmf'ﬁ =S
4 ALLFurs poms
| .u“' ¥ 2 -] wiI_ A = i -H FrOENed
OxHanin TE -r:J_E“m;“ bar /F oxdd
[T el 11:_103']“!0“0*."@.‘ FF Oxdl
0 TH ¥II io op aml 1 = OxGm; £
| T I £ omdld
DM =0 Bl
L] #1 - A
[o Propeity Window o
Wl /* initialisze WOF coafigurable wariables */
. v |1 = | s epaan
f| Ternabe s Dol il (el edal aee
= My X Breskpoin Lt
Campiing e Template Srime Fleesitdde
Ogereds, L wirargs aned Dnformilondl messige o Termlabe.s
[, ese] sarciTemplate < ine: 1791 (ssaming] 1405 hoe mswanch
Amprbing S | Terplate .am
gt ped, 0 weierarge arwd 0w Foewilnngl s
Lirniing Pud Terpla iz
O arvorn, O warnings and 0 informstonal messages

To undock a panel just click on the title bar again and drag to any area in the main window.

3.5.2.8.2 Stacking Panels

Stacking panels is just another way of docking them. But while docking a panel in a docking site will
make the two panels occupy half of the area, stacking them together will enable both panels to use
the whole area for themselves but with only one of the stacked panels being displayed at any given
time.

To stack a panel on top of another panel just click the title bar and drag on top of the middle docking
zone selector you want an then release.

Copyright © 2012 Future Technology Devices International Ltd. 147

Vinculum Il User Guide
. AN_151 User Manual Version 2.0.0
Chlp Clearance No.: FTDI# xxx

7 FTDI Document Reference No.: FT_000289

.] N T - Wi s Rt o
o it - Bk Debeg g

A - R A eaEr £ B B

1 of | 2
lmﬂ._iﬂm-q- BeRsoE Mapfis PV Sda | Wreody Windtw | Wlh | Lol QuettWwirtth | Tremed Metager (ode imewcton

Feujed

)

B wmc | e dowmmad || Maa e 1 7] ot ey - Pyt Mamager A
: i
- 4
]
i
[
-t ik el ¥ - o # -y ;
* 7 dern
) i
3 = & 77 Doy
3 i
4 AT
Fim.c
[P
ki B
s = x 7S AR T = Frigerls W ax
81 33 A5 & T B S A BCDE | o P ey T Vir ot
e ol Faih C-Frogrem .. roiuade
5 VERSTON STRING "1.4.47 Filr re e
Bl iy L]
Irare §aodalwd RCA0E L Tl P
Incheded i praject bar
1T Mwrary
| S
1 A -
. e B T A
3 Cel® o prabw S Lrwieen
2 ol 2 : PR -
a ey, B T oLl e .
1 e P e N P e+ o D e) - okt - 7 o TR by WO _ i o | el P J . (e
Carping Pt
3 Fa, 1 ARTINGE & () G PR
i T e e i] PO e YT e e i b P e A A
5%] n Byt for S solutor Debug 9
11 etrren sl) s B
[T Lad [
Below is how the panels will be stacked together.
- = -
4 Messages, Breakpoint List N i _ @E‘ﬁ
i Messages o ow

C:\Users \FTDI\Desktopbin \WinC .exe ¢ -0 DebugKitt.obj -I indude I C:\Users\FTDI\Desktop\GPIOKitt_2\GPIOKitt -d 1 -0=0src'Kitt.c
Compiling src\Kitt.c

0 errors, 0 warnings and 0 informational messages

C:\Jsers \FTDI\Desktopibin\WinC.exe -c -0 Debug'File.obj -1 indude -I C:\Users\FTDI\Desktop\GPIOKItt_2\GPIOKitt -d 1 -O=0File.c
Compiling File.c

0 errors, 0 warnings and 0 informational messages

C:\Users\FTDI\Desktopbin\VinL.exe -o DebuglKitt DebuglKitt.obj kernel.a gpio.a Debug!\File.obj d 14U 0

Linking Debug'Kitt

i Messages l 2 Bfea@"‘”tl'mj

3.5.2.8.3 Pinning Panels

Another way to save display area aside from stacking panels together is by pinning them on the
sides of your main window so that only a tab of that panel will appear. Then just hover your mouse
over that tab to display the entire panel.

To pin a window to its side simply click on the pin icon on the title bar of that panel.

Below is an example of how pinning works. The Memory window is pinned to the side with only the
tab being displayed. The entire panel will slide out if the mouse is hovered on top of the tab.

Copyright © 2012 Future Technology Devices International Ltd. 148

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

w_ || == Watch List /X
% Watch |h‘alue | [
g var undefined

=

3.5.2.8.4 Hiding Panels

One last way to get more display area is to simply display the panels that you may need and then
hiding those that you don't. This can be easily done just by clicking the close button on the right side
of each panel or by unchecking them on the View tab group on the Tabbed Toolbar. Closing them will
cause them to be hidden from view completely.

To display the hidden panel simply go to the View tab group on the toolbar and check the panel you
want to be displayed.

3.5.3 Using ViIinIDE

Starting the VinIDE from the Start Menu or the shortcut to the executable on the desktop will display
a splash screen and the main window.

3.5.3.1 Application Wizard

The application wizard has been designed to guide developers through the creation of a template

application. It allows the developer to tailor their application by selecting the module it is designed
for, the interfaces that are to be connected to the chip and the routing of interface signals to their

appropriate headers.

The application wizard is available from the Project category of the File tab:

- H hi

Open
Project
The wizard generates a new project file containing two C files with: all IOMux correctly routed for the
specific module; all appropriate header and library files referenced; driver initialization; kernel setup;

and finally thread creation. By removing the need to perform these steps by hand it helps to cut
down design-time for the developer.

The wizard has been broken down into a number of logical steps to make the task of creating a
template application more straight forward. Each of the steps is listed here:

e New Project - Name the new project and specify the location it is to be saved.
e Target Module - Select the VNC2 module that the application is being designed for.

e Drivers - Choose the Hardware Device Drivers and Layered Drivers the chip is to communicate
with.

e |OMux - Route the IOMux for the appropriate VNC2 module.
e Kernel - Configure the VOS Kernel.
e Threads - Create any number of application threads.

e Summary - Summarizes all of the above information prior to creating a new project.

At present the application is run-once but it is our intention, with future releases, to allow the wizard
to be run any number of times to accommodate changes to all constituent parts.

Copyright © 2012 Future Technology Devices International Ltd. 149

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.5.3.1.1 New Project

The first stage is to give the new project a name and specify the directory in which the application
will be created.

4 Application Wizard @

New Project TargetModule Drivers 10Mux Kernel Threads Summary

Froject Mame: MyFirstProject

Project Directory CH\FTDIYNC2\Projects
Create Directory for Project

Solution Mame: Ty First3olution

Press Finish to build project manually or Mext to use Application Wizard,

Mexk = l ’ Finish] [Cancel

A solution may encompass a number of different projects, if this project forms part of a larger body of
work the Solution Name may be entered in the box provided.

To create a new directory with the specified Project Name within the Project Directory, check the
Create Directory for Project box.

3.5.3.1.2 Target Module

At present the wizard can be configured for the Vinculo, V2Eval Board or a Discrete chip. A Discrete
device represents a chip that is not connected to a Vinculo or V2Eval board.

Copyright © 2012 Future Technology Devices International Ltd. 150

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

4 Application Wizard @

New Project TargetModule | Drivers 10Mux Kernel Threads Summary

Select Module:

Vinculo W2Eval Board Discrete

Select Package:

< Previous] [Mext =] l Finish] [Zancel

The V2Eval and Discrete chip can be configured for all, two or one of the available 32pin, 48pin or
64pin package types. The Vinculo is only available with a 64pin package therefore this choice is not
available.

Selecting the correct module at this stage will help in the process of routing the IOMux signals to
their appropriate headers later.

3.5.3.1.3 Drivers

Driver selection, including all layered drivers, can be done using the Wizard. It is important to note
that all drivers in the system have a number of dependencies.

As an example of a dependency: selecting the BOMS driver will require the USB Host 1 or USB Host 2
driver to be selected; the Host driver is a dependency of this layer and BOMS must sit on top of it.

Top-Down Selection

The top-down driver selection involves selecting drivers at the highest levels and working down
through the driver layers to reach the physical interface layer on the hardware. Here the FAT driver
has been used as an example.

Selecting the FAT driver as the top most layer gives a number of options for lower level drivers. From
here the developer may select to use the SD Card Driver or a BOMS driver. If the SD Card Driver is
selected (Figure 1) the SPI Master driver must also be selected due to the layers forming a
dependency. If the BOMS driver is selected (Figure 2) the developer must then choose to use the
Host 1 or Host 2 layer drivers.

Note that the question mark symbol within the treeview indicates that a choice must be made on a
lower level to complete the driver dependencies.

Copyright © 2012 Future Technology Devices International Ltd. 151

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

% Application Wizard M

New Project Target Module Drivers IOMux Kernel Threads Summary

Select Drivers: Driver Files:
~[Cpwm || | EHardware Drivers
[Timer 1 SPIMaster Driver
|l i 2 ElLayered Drivers

X FAT File System
= Layered Drivers SDCard Driver

=[] FAT File System ClLibraties
—-] BoMs

~[] UsBHast 1

[] usEHost 2

SCCard

=1 [UseHost FT232
~[JusBHost 1
=[] UsESlave FT232
- [Juskslave 1

[uskslave 2 M

i Chill T mmim, (" =i,

SO Card access using SPI Interface {hot compatible with MMC)
Attention: SDCard requires SFI Master

< Previous Mext = ’ Finish] ’ Cancel

Figure 1: SD Card layered driver selection.

Copyright © 2012 Future Technology Devices International Ltd. 152

Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

% Application Wizard @

New Project Target Module | Drivers I0Mux Kernel Threads Summary

Select Drivers: Driver Files:
[P # | | ElHardware Drivers
[Timer 1 1 SPIMaster Driver
" ElLayered Drivers
[Timer 2
- FAT File System
= Lavered Drivers BOMS Drivyer
=I-[¥] FAT File System ClLibraties
= [7] Boms
[usEHast 1
[usBHost 2
=[] sDCard

[] 5PI Master

- [] apc_mcranog

[] 5PI Master
=[] USBHost FT232

[UsEHast 1

[usEHost 2
=[] usBslave FTz3z

[useslave 1

[useslave 2
[el G s, P [

Bulk Only Mass Storage for USE disks
Attention: BOMS requires USBHost 1 or USBHost 2

[Finish] [Cancel

Figure 2: BOMS driver selection.

3.5.3.1.4 IOMux

The wizard provides a graphical representation of the VNC2 chip/module to aid with routing signals
for the IOMux. Drivers that have been selected in the previous Drivers section appear in a treeview
on the left hand side of the screen. Note: the USB Host/Slave interfaces cannot be routed and so
will not appear in the list.

Routing Signals

When an interface signal from the treeview is clicked all pins that this signal can be routed to will be
shown in red, pins that this signal is currently routed to will be displayed in green. Interface signals
can be dragged and dropped from the treeview onto accepting red pins. Alternatively, individual
pins on the board can be clicked and a signal assigned through the pin context menu (Figure 1).

Signal 3 Debugger

Signal Sense b SPI_Masker SPI_Masker _CLE

10 Cell Configuration # SPI_Masker_C5_1

Restore Default

Figure 1: Pin Context Menu.

Copyright © 2012 Future Technology Devices International Ltd. 153

Vinculum 11 User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

Some signals on the board can have a different sense depending on their role, for example, GPI1O
signals can be routed as Input, Output or Bi-Directional. To accommodate this, the sense of signals
can be changed through the pin context menu (Figure 1).

10 Cell Config

10 Cell configuration can be achieved through the pin context menu. This allows for changes to drive
strength, slew rate, trigger value and pull setting.

Debugger Pin

Each chip/module comes with a debugger pin routed by default. The debugger pin provides an
interface for the IDE and the chip to communicate over to allow flashing memory, setting breakpoints
etc. Itis possible to remove the debugger routing, however, FTDI recommend that the debugger
signal is not re-routed and is indeed included in all designs.

Disable Output

Output signals that have been moved from their default pin location will still drive the signal on their
default pin. To turn this feature off select Disable Output from the pin context menu.

Vinco

4 Application Wizard o | 1= H

Mew Project TargetModule Drivers 10Mux Kernel Threads Summary

® SesEEEEEE SEEEEEEER
J4 llllll'3llllllll
w013 121110 9 8 543210

A
5 TAD RXD
Z

2o VNCLO-MBIA =2

av 5V
AREF %el.

Ny |

FWR Sel.
PEU VBUS

Pininformation | [

Designation:
33

Current Signal:
WCTIVI

Signal Sense:
Signal Output

R

E

8

: T
£ 3V35V GND Vin - 0 1 2 3 4 5 J2
J1

RESET #

< Previous] ’ hexk =] [Finish] ’ Cancel

V2Eval

Copyright © 2012 Future Technology Devices International Ltd. 154

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

PP

New Project TargetModule Drivers | IOMux |

Kernel ~ Threads Summary

EE5N V2EVAL. ™™=

Vinculum Il - Evaluation Board

DER

"
§
OTR= E
o b
°
=
z
o

-1-1-1-2-1-2.%.0-2-2-2.0-0-%-01.0-0-2.0-0-1-0-2.0-2-02.2-0-0.0.0-2-0.0.%-0.0.0-23-02.2-2.2.0.0-1-7-%2.%8-2.]
-4-4-1-1-1-3-2-1-1-1-2-0-1-2-0-0-30-2-20-1-3-1.2-21-1-2.2-3-2-1-2-2-1-94-2-2.0-7-1-2.2-0-2-2-9-1-1-2.-2-2-/
©00
0000000000000 0000000000000000000000000000000000000
e00
000
-l-2-1-1-0-2-2-1-2-2-2-0-1-2-0-21-1-2.0-1-1-1-2-0-23-2-2-%-0-0-2-2-91-2-3-2-1-1-3-2-2-%-2-0-1-1-1-2.3-1-]
6500
0000000000000 000000000000000000000000000000000000D
e00
200)
000

Pin Information 000
00D

Designation: c000D
000)

CNF_I035 -1-1-1-1-1-1-2-1-1-1-3-3-1-%-2-1-1-3-2-1-1-1-2-1-1-2-%1-%-1-1-%-3-1-91-2-2-31-3-1-3-%3-3-%-3-1-1-1-1-2-1-]

0000000000000 0000000000000000000000000000000000000

Current Signal: ©00)

SPI_Slave_0_C5
Signal Sense:
Signal Input

[<rrovoss | (o> | (e] [concsl |

Note: Signals on the V2Eval appear in multiple locations on the board therefore the Wizard will
indicate all the pins where this signal appears in green.

Discrete

Copyright © 2012 Future Technology Devices International Ltd. 155

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

% Application Wizard @

New Project TargetModule Drivers ¢ I0Mux Kernel Threads summary

- Debugger
Debugger

- SPI_Master
SPI_Master _CLK
SPI_Master _MOSI
SPI_Master_MISO
SPI_Master_C5_0
SPI_Master_C5_1

AXXXXXXXX

VNC2-64L1A

Pin Information

Designation:
IOBUSZ23
Current Signal:
UART_CTS_M
Signal Sense:
Signal Input

< Previous] [MNext = l [Finish l [Cancel

3.5.3.1.5 Kernel

The Kernel screen allows the developer to customize how the VOS Kernel is initialized in their
application. The following options can be configured:

e CPU Speed: Refer to section vos set clock frequency().

e |dle Thread TCB Size: Determines the amount of memory allocated for the idle thread. Refer to
section vos_set idle thread tcb_size() for more information.
e Quantum: Refer to section vos_init().

e Number of Devices: This is the number of additional devices (excluding devices selected at the
Drivers screen) that the developer wishes to add to the system. This values provides scope

for developers adding their own drivers to the system.

Copyright © 2012 Future Technology Devices International Ltd. 156

Document Reference No.: FT_000289
FTDI Vinculum 11 User Guide

Clearance No.: FTDI# xxx

Chip AN_151 User Manual Version 2.0.0

Mew Project TargetModule Drivers I0OMux l(emd‘ Threads Summary

CPU Speed:

Idle Thread TCB Size:

o
—
™

Quantum:

[

MNurnber of Devices:

{In addition to devices created for Drivers)

< Previous l I Mext =] [Firish l [Cancel

3.5.3.1.6 Threads

The Threads screen allows multiple threads to be added to the application. These are started
automatically from the main() function.

Prototypes and function place holders will be added to the application when a new application is

made. Function place holders will not be changed if an application is modified.

L # AppWizard

Mew Project TargetModule Drivers I0Mux Kernel "ﬂreads'\ Summary

Thread Name |Priority TCB Size Parameter Parameter Declarations

Size

Function Parameters

N

Copyright © 2012 Future Technology Devices International Ltd.

157

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

The 'Parameter Declarations’ box is used in the function prototype and function definition. Names of
variables as well as types, separated by commas are required.

The 'Parameters’ box is how the parameters should be shown in the call to vos create thread ex()
in the main() function.

3.5.3.1.7 Summary

The summary gives the developer a chance to review their new application before the project file
containing all relevant C files is created.

New Project TargetModule Drivers I0Mux Kernel Threads Summary'

[< Previous J | Mexk = | [Finish] [Cancel J

3.5.3.2 Project/File Handling

VinIDE project files have a “.vproj” extension. It supports C source files, assembler files, header files,
object files as well as other files. The project files uses relative addressing.

3.5.3.2.1 Creating a new project

1.Click on New Project

E = I';'"" l':."". |
b (e
—d_i!_ m L_ _ i _ |
Open Modify Save SavehAs Clase |
" App Wizard Project I
Vinco Wizard Project
Blank Project
or

Copyright © 2012 Future Technology Devices International Ltd. 158

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

A
Mew » File
Qpen i Create anew file inthe project
Save] Project
Save As. Create a new Vinc II project
Print
Close ¥
Options Exit

The New Project window will appear.

% AppWizard o)
Hew Projed A
Project Hame: Froject_
Project Directory: Ciierkives =]
(X Create Directory for Project
Solutson Hame; Sohubon_1
Cancel

2.Type the name of the project (the filename of the project file), the path where the project file will
be saved, and the solution name.

The solution name will be the name of the output binary file when the project is built.

3.Select OK.

3.5.3.2.2 Adding files to your project

3.5.3.2.2.1 Adding new empty file
1.Click on New File

MIF”E
| HHH-—‘LIL+#

Cpen New S5ave Save As Save All Close Add Remowe
File

or

Copyright © 2012 Future Technology Devices International Ltd.

159

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

ﬂew] I'_IlE'
Open R Create a new file inthe project
Save] Project
Save As... Create a newVinc II project
Print
Close *

Options Exit

FE Kitt

{

Or by right-clicking the project node on the Project Manager panel.

£ Kittvproj - Project Manager I.Elglﬁ

4| FTDI Libraries
. 4. | Indude
i 4. | Kernel
el] IoMux.h
..... L] vosh
- el | devman.h
4 _ Drivers
: . fisspe al GPID.I-I
4| Libraries
4. Kernel
P el kernel.a
4| Drivers

Make

Build k

Clean

Add

Add Mew... 3

Save
Save As..,

Rename

Manage Libraries.. k

Options...

C File
ASM File
Header File
Text File

Virtual Folder

The Add New File window will appear

Copyright © 2012 Future Technology Devices International Ltd.

160

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

= MNew File - i B

,) a e
C File Header File ASM File Text File

e

2.Select the type of file you want to add and press OK.

3.5.3.2.2.2 Adding existing files
1.Click on Add File

‘MIFHE
| H R b Ly &

Cpen New S5awve Save As Save All Close Add Remowe

File
or
New + | File
Opidi : Open an existing file
Save] Project
Print i Open an existingVNC2 project
Close ¥ Recent Projects
About Open a recently opened project *
Help
| Options - |

or by right-clicking the project node on the Project Manager panel.

Copyright © 2012 Future Technology Devices International Ltd. 161

FTDI

Document Reference No.: FT_000289
Vinculum Il User Guide

Clearance No.: FTDI# xxx

Chip AN_151 User Manual Version 2.0.0

757 GPIOKitt.vproj - Project Ma,.. | (51 [

47 GPIOKitt !
4. FTDI Libraries Make
.-l_ Libraries Build 3
{ 477 Kernel
: N & kernel.a Clean
4 - | Drivers
T L | GPID.a i
4| Indude Add New... ’
4. Kernel
..... : VDS.I-I SEVE
4 | Drivers Save As..
.| GPIOh Rename
""" | | GPIOKitt.c
""" || GPIOKitt.h Manage Libraries.. L
----- | | GPIOKitt jomux.c :
----- | ReadMe txt Dt

.

The open file dialog will appear. The open dialog have 6 filters to choose from (C, Assembly, Header,
Object, Library, All file types). You can multi-select files by holding the CTRL key while clicking on the
files you wish to add.

2.Press Open button.
3.5.3.2.2.3 Adding Libraries and Headers

It is recommended to add FTDI libraries to a project using the Application Wizard. However, it can be
done manually using the FTDI Libraries section of the "Build" toolbar.

@ 3

Libraries Header Files

FTDI Libraries

This will show a dialog box allowing you to add either Library (.a) files or Header (.h) files from the
FTDI Libraries.

Header files are not added as #include lines in source code.

Copyright © 2012 Future Technology Devices International Ltd. 162

2 FTDI
Chip

Document Reference No.: FT_000289

Vinculum Il User Guide

AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

Project Library

fvailable Header Files

] Kernel

Project Included Header Files :

DML b

] Drivers

3

A0C_MCP3008. 6
BOMS. b
ethernet_wS5100.h
FIFC.h
Firrmwarelpdate, b
Flash.h

GPIC R

IOCTL.h
MP3_Y51053.h
P, b

RTC.h

SPISlave.h
Stilllmage. b
Tirmers.h

JART.h

IISE.h

1ISBEaudio. b
SBDFLL b

[Conl TR

IsBandroidaccessory, b

l ’ Cancel

Any header or library files added in this way will be overwritten by the Application Wizard if a project

is modified.

3.5.3.2.3 Saving the project and files
3.5.3.2.3.1 Saving the project

To sawe the project in its current filename :

1. Click on Sawe Project

w File Edit

1 H RN K

Open MNew Save Save As Save All

Savefilein a different filename

File
or
. _
ﬂ.:_l-w] File
Open]
Saye J
Save File As
Print]
Close »
About Project
ﬂE‘lp = i

Save changes in thefile

Options

=] = R R

Save Save-As Close

el Cptions

Print Program

Copyright © 2012 Future Technology Devices International Ltd. 163

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

or by right-clicking the project node on the Project Manager panel

£ GPIOKitt.vproj - Project Ma... S

47 GPIOKitt
4.~ | FTDI Libraries Make
4 - | Libraries Build r
| ‘— Kernel Clean
el | kerne
J_ Drivers Add
: L.l GP1o.
4.~ | Incude Add New.. E
4.7 Kernel
NG Save
i ben | vos.h
4 -7 Drivers Save As..,
| GPIO. Fename
-~ | GPIOKitt.c
| GPIOKitt.h Manage Libraries.. 3
| | GPIOKitt jomux.c Sntide.
| ReadMe. txt

To sawe the project in another filename :

1. Click on Sawe As in the Project group
w File Edit View Build Debug__

I HH“H”-«-K |

Open Mew Sawe Save As Sawe All Close Add Remove Open

File

Or by right-clicking the project node on the Project Manager panel

: A | 1 1 h
s A e k4
Open Ew Modify Save SaveAs Close

Projeck

or by right-clicking the project node on the Project Manager panel

2 (d e e »

Modify Sawe Save As (lose Options

-

Project Print Program

Copyright © 2012 Future Technology Devices International Ltd. 164

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Eﬁ GP]Oifttuprch Project Ma... @Elﬂ]

a5

™ GPINKitt
| FTDI Libraries
Libraries

B
: ~ Kernel

B

| GPIOKitt.c

| GPIOKItt.h

| GPIOKItt jomux.c
| ReadMe. txt

55

s

Indude
" Kernel

“l) kernel.a
: Drivers
g = GPIO.a

£ | 'U'DS.h

-

: Drivers
e L | GPIO.h

Make
Build

Clean

Add

Add Mew...

Save
Save As..,

Rename

Manage Libraries..

Options...

3.5.3.2.3.2 Saving individual files

To sawe a file, it should first be opened in the editor.

To sawe the file in its current filename,

1. Click on Sawe File

Y7
ik

File

th

b

L. 1 e

Add

Open Save Save As Sawe All Close
| File
or
New File
open Save changesin thefile
Save
Save File As
Print e : ;
savefilein a different filename
Cloze
About Project
Help [: 'y B
options | | Bat |

Remowve

or by right-clicking the filename on the Project Manager panel

Copyright © 2012 Future Technology Devices International Ltd. 165

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

] GPIOKittvproj - Project Ma... = =) [ESe)
4. GPIOKitt
4.~ FTDI Libraries
4 Libraries
L 4 __ Kernel
Ll kernelaa
4 __ Drivers
5 _._ GPIO.a
4.7 | Indude
4 Kernel
i el | wosh
4 Drivers
.. GPIO.h
----- | | GPIOKitt.c
..... | | GPIOKitt.h Build 4
----- | | GPIOKItt_iomux.o
----- | | ReadMe. txt Open
Save
Save As...
Fename
Remove From Project
Manage Libraries..]
Properties

To sawe the file in another filename,

1. Click on Sawe As in the File group

I

File

H R b L

+ X
Open Mew Save SawvefAs Sawve All Close Add Remaowve
File
or
g
il I W oM |
Open MNew Save SavefAs SaveAll Close Add Remove
File:
or

Copyright © 2012 Future Technology Devices International Ltd.

166

Vinculum 11 User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

File
save changes in thefile

Save File As
savefilein a different filename

Project
-]

| Options | | Exit |

or by right-clicking the filename on the Project Manager‘panel

{£] GPIOKittvproj - Project Ma... L=l 1 [

a7 GPIOKitt
4 - FTDI Libraries
- Libraries
P | Kernel
. bl] kernela
4.7 Drivers
5 L. GPIO.a
4.7 Indude
4. | Kernel
ol | vos.h

s

4 - | Drivers

----- | GPIOKittr
----- | | GPIOKit Build »
----- | | GPIOKit
----- | ReadMe Open

Save
Save As,.,
Rename

Remove From Project

Manage Libraries., *

Properties

g

3.5.3.2.3.3 Saving the project and the files

You can also sawve both the project and the files in the project with just one action

1. Click on Sawe All

.U_ File
) S S F

Open New S5ave Save As Save All Close Add Remowe

File

Copyright © 2012 Future Technology Devices International Ltd. 167

Vinculum 11 User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

3.5.3.2.4 Opening an existing project
1.Click on Open Project

Jl oy L

Open Ew Modify Save SaveAs Close

I Praojeck
or
-_—
B v | File
Gpen - Ooen e exsting filg
Save v Propect
Eriat o | Dpeen an edisting VHCE peoject
Close b | oot Prejects C\Users\ FTONDocunents) FTON Farrveaee) Samplesiv] A0 Generan GEA0K GRIERLvproj
bk e precently opened perojed '
ChLsers FTONDocuments\ FTDN Firrsse e SamplesiV1 440 Vinco\ Seniah AscaTable AscaTablevprey

Help

C\Userr\ FTON Degumnents| FTON Fires) Samples WLAS Vinee\ ISBHem Vinco_I237 leepbackiVince, 1232 loopbatk vpre
Options Bat | CAUEert FTONDocument s\ FTDR Furenie €\ S plet WL AN Vine e\ e FAT HelleWaddh st FAT vgaigy

CUeert FTONDocuments\ FTDR Furrersae €\ Samnples WL A4 Vineg\ Time\ Blssk WashDelar ElinkWnthDelay vpeg)

ey FTON Desktop’ best i Selutaon_L\Project_1vpra)

CAUpery FTON Do wments | FTDR Firrrvsae ' Semples W1 AL USEHoe N\ LISEHestHIDE b LIBH ost HIDKE vproy

CUeers FTONDocwments \ FTDR Firrrvsee e\ Semples W1 A4 Vinc\LUSBHo® Wingo_USBHostHIN Vinco_USBHostHID AW vprgj
ChUgers FTON Docwments\ FTDH Firrrmsee e\ Samples\ V1AL Vinco \USBHow Winco_HelloWorkd\USBHcst HellcWarkdvprey
ChUgers FTONDocwments | FTDH Firrsar e Samples W1 A4 WincoUnsloghdnaloginputDutputi AnsloginputOutpat vpeoj

The open project dialog will appear.
2.Select a project file (*.vproj) and press Open

The project as well as the files included in the project will be added into the Project Manager panel

Q.7
Fia s Virm Bali Sebeg “

Rl L P =

i ' o
DIJA] % [o])%[A
Pegied | Propectel | Meiagel | Dasmnerbly |Bmeioosh Mapiiy | CPU 3ata | Merrory Windos | Wilth | Lisah | QuickWelth Thred Marager Code mpeciar

Prige(t Pareis Sty P Plgrs
- BT prre— — | o Poctanage K
Faae i 1 - - | @ GO
dirscaion "o" DwdF F a% Filecans: SPTONIEE. ? FTOE LEw ey
a5 3 - - Lbraren
e e ! |or Auremsuiceliy creaved By Application Wirard .3 T —a
walus " BmT o o T 2 7 Dreepry
i = Fa : G G - .
- & 7 irekde
4 as Fl vl
.) .
Ll ESS——— e rea s betwasn markers °F . «r will be ove: 235 Doy
rarr ah i i Lias Fiaar .| SR
ream_wrieten SwkTd 12 . e T
k= o - 13 L A = . ML N
boeil " .a!r 14 AT e
i il 18 banclude GRICELTT RS Rrachan. bt
P PO LT '] >
i st ey =l .
walus "s' CmTH = . N
dirscilon "o" OmdT - TEE
1%
1%
]
dad
2 ~
4
15
FE AL
i R — ax
14 Vi ey (o R -
I¥ Folll Fath Cumel R
L1 T — T . .
L File v T
Tt = w
AR Ml g 33 Rrad anby Faar
“E P L 0% 1 DT ML 12 * FIGIiEDD = Dakr Bioaderd T R RS L
sobpadeeeonn| M .) . | Deckebed i prapent e
. - DA beaey Fane =
A e K@ mresgond et L
Siarfing debugring proome. Erasie Fierame (L0 e1 rnt v
COPreIRg W T St Dot o [L
Sl reod el breaRpoet GFROIGON.C e 1L 7 rn— 1
] - 13
. 118
| [nd2 Call

Copyright © 2012 Future Technology Devices International Ltd. 168

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.5.3.2.5 Closing a file
1.Click on Close File

{l 16X H | + X

Open MNew Save SavefAs SaveAll Close Add Remove
File
or
b, b
Mew + | File
Open , | Closecurrentfile
Save [
e i Close Project
s Close the current project and all
Print openfiles
Close r
Options Exit

or by clicking the X button on the file’s tab in the editor

Template.c |23 Templa
HE

Y i
£ 4

The file will be closed for editing but will remain as part of the project. To remove a file from the
project, please see under Removing a file from the project

3.5.3.2.6 Closing a project

1.Click on Close Project

J e e L

Open - Modify Save SaveAs Close

I Praojeck
or
b, b
Mew] File
Open n Close currentfile
Save]
Close Project
Save As -
Close the current project and all
Print openfiles
Close]
Options Exit

The user will be asked to save all unsaved files if any. All open files will be closed as well

Copyright © 2012 Future Technology Devices International Ltd. 169

Vinculum Il User Guide

FTDI Document Reference No.: FT_000289
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

3.5.3.2.7 Removing a file from the project

1.Click on Remove File

q FI-—‘ + X

Open Mew ave Az Save All Closze Add Remove
File:

or by right-clicking the filename on the Project Manager panel

1 GPIOKittvproj - Project Man... o=l e

4 | GPIOKitt
4. FTDI Libraries
4- Libraries
© a4 Kernel
- .| kernel.a
4 - Drivers
: -l | GPIO.a
4- Indude
4 Kernel
e " | vos.h
4 - Drivers
tl | GPIO.K
----- | GPIOKitt=
..... GPIOKIH Build 3
----- | GPIOKiti
----- | ReadMe Open

Save
Save As...
Rename

Remowve From Project

- = Manage Libraries.. r

Properties

The file will be closed if open and will be removed from the list of files

3.5.3.3 Building a project

Building a project involves compiling, assembling, and linking the source files into the output binary
and ROM files. The object files as well as the final executable and ROM file is saved in either a sub-
folder called "debug" or "release™ in the folder where the project file is stored. These folders are
automatically created by the IDE when you create a project.

3.5.3.3.1 What you need to do before you can build your project?

Before you can build your project:

1.Make sure you have the latest executable files for the other modules of the toolchain, namely:

e The Preprocessor (VinCpp.exe)

The Compiler (VinC.exe)

e The Assembler (VinAsm.exe)

The Linker (VinL.exe)

2.Make sure the paths of the above executables is declared either by adding them to the path
environment variable or by explicitly declaring them in the IDE’s options module (see IDE options).

Copyright © 2012 Future Technology Devices International Ltd. 170

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

The path environment variable will be automatically updated by the supplied installer for the VNC2
IDE.

3.5.3.3.2 Compiling a single source file

1.Right-click the file in the Project Manager panel.

£ GPIOKitt.vproj - Project Man,.. == e

4 | GPIOKitt
4 | FTDI Libraries
4| Libraries
4 Kernel
- il kernela
4 - Drivers
: b .| GPI0.a
4| Incdude
4 Kernel
. Lel] ves.h
4 Drivers
el | GPIO.h
..... | | GPIOKitt L__.
..... GPICKIH Build 3
----- GPICKit
----- ReadMe Open

Save
Save As...
Rename

Remowve From Project

— MEHEQE Lihraries.. 3

Properties

r

2.1f there are any compile errors, these errors appear below in the Messages panel.

Double click the compile errors to highlight the line number of the file where the error is generated.

3.5.3.3.3 Compiling the project
1.Click on Build

File Edit View Project
e B N

. fh‘g’ Click to build all filesi
Make Build ~Clean

Build

Or right-click the project node in the Project Manager panel

Copyright © 2012 Future Technology Devices International Ltd. 171

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

dma.ob Make
ek Build
i~ Templa
.. Templa Clean
- Lart.ok
Add
Add Mew... 3
Save
Save As..,
Rename
Options...

If there are any compile errors, these errors appear below in the Messages panel

i Compiling” TCMUX driver section */
Template
Compiling : Template.c
| Total Lines: 0 i
Wi
Wamings: 1 Errors: 1
i |
|
ln
“ Messages X

Compiling srciTemplate.c
1 errors, 1 warnings and 0 informational messages

|[[VinC.exe] :srciTemplate.c line 95: {error) €1100 undedared identifier 'ch'
[VinC.exe] srciTemplate.c line 179: (warning) C1405 type mismatch
Assembling Build{Template.asm

0 errors, 0 warnings and 0 informational messages

2.1f the build is successful, the output binary file as well as the object files are written on the project

file’s build folder

Copyright © 2012 Future Technology Devices International Ltd. 172

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

[e
—
@{\Jtl .« Workfirea » VinlDE » Tests » Template » Build hd |‘9~| | Search P|
‘ Organize ~ :Ez Views ~ I E-mal (g Bumn
Eovrantebimks MNarme Date modified Type Size
- ast) Template.asm 12/3/2009 5:42 PM Assembler... 33KB
E| Documents ’ - -
o { = Termplate.bin 12/3/2009 5:42 PM BIN File 37 KB
B Pictures || Ternplate.log 12/3/2009542 PM Text Docu... 347 KB
B Music =] Template.map 12/3/20095:42PM Linker Add... 43 KB
More »] Template.chj 12/3/2009 5:42 PM Object File 23 KB
Falders w | | Templateram 12/3/2009 5:42 PM RAM File 1KB
@ VinDbg . | Ll Templaterom 12/3/2009 5:42 PM ROM File 26 KB
@ VinDbg_CLI
i . VinIDE
. W dil
i . Help
i | Images
| Simpletest
1 g SrC
| . Tests
| , Build
[) FromGordon
i | Tag |E‘
i | Template p=
./ Build
f @ include sl < LI} ¥
! 2 items selected Date modified: 12/3/2009 5:42 PM
Size: 62.5 KB
| Date created: 12/3,/2009 5:35 PM
3.5.3.3.4 Cleaning the build files
You can clean the build folder to remove the generated files.
1.Click on Clean
File Edit Wiew
] ML I
? k .{?
11 i i L
Make Build Clean
Build
or
Copyright © 2012 Future Technology Devices International Ltd. 173

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

== Template.vpraj - Project Ma... & X | I
|

4 Template.bin
dma.obj e
- kernel.ob Build
Template Clean
uart.obj Add
Add Mew... g
Save
Save As...
Rename
Options...
re .

3.5.3.4 Debugging a project
The IDE also includes debugging functions to allow the user to debug their projects easily using the
user interface.

3.5.3.4.1 What you need to be able to debug using the IDE?

Before you can start debugging:

1.Make sure you have the Debugger DLL (VinDbg.dll) file on your windows PATH environment
variable to be able to use the debugging functionalities.

2.Also make sure that the evaluation or debugger board is connected and turned on.

3.Make sure that the debug option for Compiler, Assembler and linker are set to 1 or set th Build
Configuration option to debug. (Click here to see Build Configuration Option)

The files required are installed by default by the installer program

3.5.3.4.2 Debugging Commands

@ File Edit View Build Debug 7]

% q‘ k WZ2EVAL Board C-22035 w };1

Flash Verify P - : =y R R ——— FTUIRYSRC _
as . Start Halt Stop Reset Step Step Into Step Out Run To Curser ||| YNCZ 64-pin package Options
Program Debiug Step Debugger Interface Zonneck,

Below are some of the debugging commands that you can do using the IDE :

Flash

- Used to program the board without starting the debugger tool.
Verify
- Check the contents of the ROM. (Requires ProgLoader V1.7 or later on the VNC2 device).

Start

- Used to start/continue execution of the program.

Pause

- Used to halt the execution of the program.

Stop

- Used to stop execution of the program.

Step

Copyright © 2012 Future Technology Devices International Ltd. 174

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

- Used to do a line by line execution of the program (must halt execution first before doing a step).
e Step Into

- If the current execution line is a function call, Step Into will go inside that function and execute
the first line inside(must halt execution first before doing a step).

e Step Over

- If the current execution line is a function call, Step Over will execute all the lines inside the
function (must halt execution first before doing a step).

e Step Out

- Step Out will execute all the executable lines in the current function until the first line after (must
halt execution first before doing a step).

3.5.3.4.2.1 Programming the chip
The VNC2 chip can be programmed with the ROM file without starting the source-level debugging.
To program the ROM file for the current project simply click on the Flash button in the 'Debug’ tab.

If a ROM file other than that for the current project is to be programmed into the VNC2 then use the
following process:

a) Under the Debug tab, click on the drop down menu below Flash
Flash Verify

- -

Prograrm

b) Select a ROM file then click the Open button

Copyright © 2012 Future Technology Devices International Ltd. 175

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

& Select ROM file to program ﬁ
() [J « Tests » TestMain » Build v [43 |[searen o
By Organize = £ Views ~ [MNew Folder
Links Name Date modified
i TestMain.rom 1/5/2010 10:28 AM
E Documents —
| Recent Places
Ml Desktop
More »
Folders W
, Images =«
, Simplete
B Src
, Tests
. Build
. FromG
. Tag
. Templ:
. Templi =
. Testhz
6 Build - 1] }
File pame: TestMain.rom - [mMHﬂr‘“"} 'I
| Open |¥] | Ccancel |

c) Click the OK button.

Note: Make sure to flash the chip with the ROM file (.rom) of the active project. If the flashed rom file is
different from the active project, the code cannot be debugged.

3.5.3.4.3 Adding/Removing Breakpoints
Breakpoints are used to interrupt and halt execution of the program for debugging purposes.

To add a breakpoint, click on the line number in the gutter part of the source editor corresponding to
the instruction you want the program to halt.

73 vII gpio cntrl porta 1 = Oxff: A Ox181
T4 /Y configure port
&7 ¥I1 io op sel 1 = Dx0d. S/ Or4z2
T6E vII io op src 1 = 0x29; S or4l
77 ¥vIT ic op src 1 = OxZa; A4 Ondl
78 vIT io op sel 1 = 0x0e; A4 Oxdz2

To remove the breakpoint, click on the line number again.

3.5.3.4.4 Adding Watch variable

The watch window lists the variables that are being evaluated during the debugging process. These
variables are updated after the program has paused execution. Right-click on the variable in the
source code window to add a watch variable.

Copyright © 2012 Future Technology Devices International Ltd. 176

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Indo Chrl+Z
Fedo Chrly
Zuk Chrl4
Copy (S
Paste Chrl+y
Delete

Select Al

Find Declaration

The Watch List window appear.

® Watch List [=1E3

Mame Yalue

=hsh_ckx <0x3FED =

Alternatively, the Quick Watch window from the View tab can temporarily display variables without
adding them to the Watch List window.

Bush_chx

i ik i [Cancel J

The watch window will only evaluate the value of variables, it will not evaluate expressions.

3.5.3.5 Project Options

The Project Options module lets the user change the behavior of the various modules of the
toolchain and even the build process itself.

Copyright © 2012 Future Technology Devices International Ltd. 177

FTDI
Chip

Document Reference No.: FT_000289

Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.5.1 Bringing up the Project Options window

1.Go to the Project toolbar tab and click Project Options.

2ok @ D

Make Build Clean Libraries HeaderFiles
Bivild FTOI Libraries

or

e

Options

Project

Debug

Right click the project node in the Project Manager panel.

=~ Template.vproj - Project Ma... & X | I
1

4 Template.bin
.. dma.obj Make
kernel,ok Build
|~ Template S ()
Template =an
‘- Lart.obj Aed
Add MNew... 5
Save
Save As...
Rename
Options...
l

The Project Options window will appear.

Build Configuration

Changes made in the project options window are saved when you click OK, otherwise changes are

discarded.

3.5.3.5.2 The Directories Options

The Directories options allows the user to change some path-related options like the include and
library paths as well as where the final binary is saved. To view the Directories options In the Project

Options, click the Directories node in the left hand list.

Copyright © 2012 Future Technology Devices International Ltd.

178

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Project Options . w Iﬁ

- Directories Build Configuration : Debug -

VII Compiler

VII Assembler Mame |Opﬁnns |

WIT Linker Final cutput directory Buildy, [:J

e Include path C:\Program Files\FTDIWinculum IT Toolchain\Firmwarekernellindy
Library path C:'\Program Files\FTDIWinculum II Toolchain\FirmwarekernelYib; C

Ok I ’ Cancel

|-

» Final output directory

The directory path where the binary output of the build will be saved. If no path is specified, the
default location will be inside the Build folder of the current project

» Include path

A list of directories where the other tools (i.e. Compiler, Assembler) will look into for included files in
the project

» Library path

A list of directories where the other tools (i.e. Compiler, Assembler) will look into for library files that
are needed for the project

3.5.3.5.2.1 Changing where the final output is stored

The default path where the final output is stored is in the build folder alongside the project file. To
change the path where you want to save the binary output :

1.Go to the Project Options module
2.Click on the Directories node on the options tree view

3.Type the path where you want to save the output in the Final output directory textbox (absolute
or relative path)

Drectories Name |optens |
VI Compler Firial cutput dhrectory e Praject! =
UTT Bt
4. Alternatively, you can click on the button with the “..” beside the textbox to bring up the folder

selection dialog box. Select the folder and click OK in the dialog box.

5.Click the OK button to save the changes in the options.

Copyright © 2012 Future Technology Devices International Ltd. 179

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

3.5.3.5.2.2 Adding directories in the Include path option
You can add multiple directories, separated by a semicolon, to the include path
1.Go to the Project Options module

2.Click on the Directories node on the options tree view

3.Type the paths, separated by a semicolon, in the Include path textbox (absolute or relative path)

Final GUTPUT Qirectory «« WOEW FTOJECTY
Inchude path Drivers\ncdude\;KemelServices\ndude!| =

4. Alternatively, you can click on the button with the “..” beside the textbox to bring up the multi-
folder selection dialog box.

Include Path Lﬁ

Driversindude
KernelServiceslindude),

C:WinIDE\src\Debug []

5.Click the OK button to save the changes in the options.

3.5.3.5.2.3 Adding directories in the Library paths option

To add multiple directories to the Library path option, do the same as with the Include path option

3.5.3.5.3 The Compiler Options

The Compiler options allows the user to change some compiler-related options and arguments. To
view the Compiler options In the Project Options, click the VNC2 Compiler node in the left hand list.

Copyright © 2012 Future Technology Devices International Ltd. 180

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

| .

Project Options

=X

- Directaories

- YII Compiler
WII Assembler
- VI Linker

Build Order

Build Configuration : Debug -

Mame Options

Compile to .asm then to .obj On
keep intermediate files Default
Define optional macros
Debug information level 1 {with debugging information)
Optimization level 4 (Full optimization)
Warning Limit

Errar Limit

Verbose mode on

Additional options to pass to th

Command Line Preview VinC.exe target.c-5-d 1-0=4-v

Ok I ’ Cancel

Compile to .asm then to .obj

Keep intermediate files

Define additional macros

Debug information level

Optimization level

On — The compiler is invoked with the —S switch. The compiler stops processing after
preprocessing and compilation. The assembler is invoked in another process.

Off — the compiler is invoked with the —c switch. Preprocess, compile and assemble in one

call

Default — Use the compiler's default setting.

Off — Intermediate files are deleted after the compiler execution.

Assembly files — The compiler is invoked with the "--save-temp a" switch. The compiler

keeps the .asm files it generated before calling the assembler.

Preprocessor files — The compiler is invoked with the "--save-temp i" switch. The compiler

keeps the preprocessor files after the call to the preprocessor.

Both — The compiler is invoked with the "--save-temps" switch. Both assembler and
preprocessor files are kept.

User macro definitions that are to be used for compilation are entered here

Default — Use the compiler's default debug information level setting.

0 — No debugging information is included in the compiler output.

1 — Debugging information is included in the compiler output.

Default — Use the compiler's default setting.

0 — No optimizations.

1 — Register Allocation optimization is invoked.

Copyright © 2012 Future Technology Devices International Ltd. 181

N

o Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

o

2 — Register Allocation + Partial IC optimization is invoked.

3 — Register Allocation + Full IC optimization is invoked.

4 — Full optimization (RA + Full IC + Peephole) is invoked.
Warning Limit

The limit of the warning messages to be issued by the compiler.
Error Limit

The limit of the error messages to be issued by the compiler.
Verbose mode

On — The compiler is in verbose mode.

Off — Quieten output of compiler.
Additional options to pass to the compiler

Any additional switches that have to be passed to the compiler are entered here.
3.5.3.5.4 The Assembler Options

The Assembler options allows the user to change some assembler-related options and arguments.
To view the Assembler options In the Project Options, click the VNC2 Assembler node in the left hand
list.

Project Options - [&J

. Directories Build Configuration : Debug -
VII Compiler
VII Assembler Marme |Opﬁnns |
VII Linker Debug information level 1 {with debugging information) |Z|
- e Keep intermediate files Off

Verbose mode on

Additional options to pass to th

Command Line Preview VinAsm.exe target.c-d 1-v

Ok I l Cancel

e

Debug information level
Default — Use the assembler's default debug information level setting.
0 — No debugging information is included in the assembler output.
1 — Debugging information is included in the assembler output.
Keep intermediate files
This is not yet implemented.

Verbose mode

Copyright © 2012 Future Technology Devices International Ltd. 182

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

On — The assembler is in verbose mode.
Off — Quieten output of assembler.

Additional options to pass to the assembler

Any additional switches that have to be passed to the assembler are entered here.

3.5.3.5.5 The Linker Options

The Linker options allows the user to change some linker-related options and arguments. To view
the linker options In the Project Options, click the VNC2 Linker node in the left hand list.

Project Options

S5

Debug information level
Enable optimizations 0 (no optimization)
Entry symbal
Stack size

Base code offset
Verbose mode on

Additional options to pass to th

Command Line Preview

-~ Directories Build Configuration : Debug -

VII Compiler

- WII Assembler Mame |Oph‘ons |
-+ VI Linker Use user-defined bootloader | Off |E|
- Build Order

1 {with debugging informatian)

VinL.exe target.c-d 1-0=0-v

OK I ’ Cancel

b

Use user-defined bootloader

On — The linker will not link the firmware bootloader and use a user-supplied bootloader

instead

Off — The firmware bootloader will be automatically used.

Debug information level

Default — Use the linker's default debug information level setting.

0 — No debugging information is included in the linker output.

1 — Debugging information is included in the linker output.

Enable Optimizations

Default — Use the linker's default setting.

On — Linker optimization is invoked.

Off — Linker optimization is not invoked.
Entry Symbol

Entry symbol name to be used by the linker.
Stack Size

The size in bytes of the stack to be used by the linker.

Copyright © 2012 Future Technology Devices International Ltd.

183

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Base Code Offset

The base code offset value to be used by the linker.
Verbose mode

On — The linker is in verbose mode.

Off — Quieten output of linker.
Additional options to pass to the linker

Any additional switches that have to be passed to the linker are entered here.

3.5.3.5.6 The Build Order

The Build Order options allows the user to specify the order on which the object files are linked. The
source files and included object files in the project are listed and the order can be changed through
the UP/DOWN arrow buttons.

It is recommended that the kernel.a file is placed first.

Project Options — - S - %

. Directories Build Configuration : Debug -
WII Compiler
i+ VI Assembler Mame Path
- Build Order kernel,obj
iomu, obj
dma.obj

memmamt, abj
gpio.obj

4 b

Ok] l Cancel

3.5.3.6 The IDE Options

The IDE options window allows the user to change the behavior and appearance of the IDE including
the built in text editor. The user can customize the editor’s display and colours.

Copyright © 2012 Future Technology Devices International Ltd. 184

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

* Options

) |

 Environment Options
4 -Eu_:litor Cptions
i i-Display

[Restore defaults..]

Editor Options
Auto Indent Emacs - |se syntax styler
Trim trailing spaces [5mart Tabs
Auto Expand [7] Enable word wrap

Keyboard Options

DEL erase character Cursor at no characters
[T]HOME key at first non-whitespace Previous line after start of line
EMD key at last non-whitespace Mext line after end of line

Tab Stops @ 4

Undo Limit: 32757

3.5.3.6.1 Bringing up the IDE Options window
1.Go to the Tools toolbar tab and click Options

"'ul 1'1_
T Print VWinIDE About
Opt
el - Help VinIDE

Cptions Help

The IDE Options window should appear

Copyright © 2012 Future Technology Devices International Ltd. 185

Vinculum 11 User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

[* Options Iﬁ1

+ Environment Options Editor Options

- -Eu::litor Options Auto Indent Emacs - IUse syntax styler
i Displa
Cnlzr ¥ Trim trailing spaces [5mart Tabs

Auto Expand [7] Enable word wrap

Keyboard Options

DEL erase character Cursor at no characters
[T]HOME key at first non-whitespace Previous line after start of line
EMD key at last non-whitespace Mext line after end of line

Tab Stops @ 4

Undo Limit: 32757

[Restore defaults..

NOTE : Some of the features in the IDE options are not yet implemented.

b

3.5.3.6.2 Environment Options

The Environment Options section lets the user configure some of the general aspects of the IDE like
the directories of the tools to be used, the backing up of the files before editing, and the filtering
behavior of the Message window.

[& Options ﬁ |

- Environment Options Back-up
:A -Eu::lib:\r Options Create backup of source files
Display

File change detection : prompt toreload

Messages

[T Filter Messages

Directaries

Compiler :

C:\Program Files\FTDIWinculum II ToolchaintoolsbiniWinC.exe
Assembler :

C:\Program Files\FTDIWinculum IT Toolchaintools'hiniVinAsm, exe
Linker :

C:\Program Files\FTDIWinculum II Toolchainitoolsbiniyinl . exe
Debugaer :

B & B B

C:\Program Files\FTDIWinculum IT Toolchaintoolshin\vinDbg. exe

Restore defaults..

Copyright © 2012 Future Technology Devices International Ltd. 186

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

Create backup of source files

If checked, the IDE creates a backup file (.bak) of the file before being opened in the editor
File Change Detection

Sets the behavior of the IDE if a file is changed outside of the editor

No Action — Disregard the changes.

Prompt to reload — A message box informing the user that the file has changed and asks if
to reload the file with the changes.

Reload automatically — The file is automatically reloaded with the changes disregarding the
modifications in the editor

Filter Messages

If checked, the Messages windows only shows the messages concerning errors and
warnings. If unchecked, all messages from the tools are shown.

Compiler Directory

Specifies the directory where the compiler tool is found. If there is no path specified, the
IDE uses the path environment variable for the path.

Assembler Directory

Specifies the directory where the assembler tool is found. If there is no path specified, the
IDE uses the path environment variable for the path.

Linker Directory

Specifies the directory where the linker tool is found. If there is no path specified, the IDE
uses the path environment variable for the path.

Debugger Directory*

Specifies the directory where the debugger tool is found. If there is no path specified, the
IDE uses the path environment variable for the path. At present the debugger directory is
overridden by the path environment variable.

Copyright © 2012 Future Technology Devices International Ltd. 187

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

3.5.3.6.3 Editor Options

The Editor Options section allows for configuring the functional behavior of the source editor.

[& Options Iﬁ1

+ Environment Options Editor Options
4 -Eu::lib:ur Options [¥]Auto Indent Emacs - [¥] use syntax styler
i Displa
CDEF ¥ [¥] Trim trailing spaces [| Smart Tabs
Debugger Options [¥] Auto Expand [Enable word wrap

Keyboard Options

[¥| DEL erase character [¥] cursor at no characters
[T]HOME key at first non-whitespace Previous line after start of line
[¥] EMD key at last non-whitespace Mext line after end of line

Tab Stops @ 4

Undo Limit: 32757

Restore defaults..

Auto Indent

b

If checked, auto indenting of next line is implemented
Auto Indent type
Sets the behavior of the auto indenting function
Trim trailing spaces
If checked, spaces at the end of lines are automatically remowved.

Auto Expand

If checked, setting the cursor one or more characters after the last character of a line will
automatically expand the line with spaces till the cursor position.

Use syntax styler
If checked, the editor will format the text using a built in syntax styler.
Smart tabs
If checked, smart tabs are used, performing tabs based on columns in the previous line of the memo.
Enable word wrap
If checked, word-wrapping of text is activated.
DEL erase character
If checked, Delete key erases text instead of removing the character.
HOME key at first non-whitespace

If checked, pressing HOME key will bring the cursor to the first non-whitespace character in the
line. If not, the cursor will go to the first column

END key at last non-whitespace

Copyright © 2012 Future Technology Devices International Ltd. 188

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

If checked, pressing END key will bring the cursor to the last non-whitespace character in the line. If
not, the cursor will go to the last column including whitespaces

Cursor at no whitespace

If unchecked, clicking the cursor in an area in the line beyond the last non-whitespace will bring the
cursor after the last non-whitespace

Previous line after start of line

If checked, pressing the left arrow when the cursor is at column O will bring the cursor at the end of
the previous line, else the cursor stays at column 0

Next line after end of line

If checked, pressing the right arrow when the cursor is at the last non-whitespace character will
bring the cursor to the start of the next line.

Tab size
Sets the size of the tab in the memo.
Undo limit

Sets the maximum number of undo operations allowed.

3.5.3.6.4 Display Options

The Display Options sections covers the visual configuration of the source editor.

. -
& Options &J

- Environment Options Display Options
. E::Iib:ur Options [¥] Show maodified ines

Display

- Calor
i -File Type Options
Project Defaults Gutter and Right Margin Options
- Debugger Options Gutter Width : 45 Right Margin : 80

[¥] Show Gutter [¥] show Right Margin

[¥] Show Line Numbers

Font Options

Font: Courier Mew - Size : 10

Sample ;

Restore defaults..

Show modified lines

.

If checked, a yellow colour is displayed on the gutter corresponding to the modified line
numbers of the active file

Gutter Width
Sets the width of the gutter on the left.
Show Gutter

If checked, the gutter is displayed on the left side of the source editor.

Copyright © 2012 Future Technology Devices International Ltd. 189

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Show Line Numbers
If checked, the line numbers of the active file is shown on the gutter.
Right Margin Width
Sets the width from the first column of the right margin line
Show Right Margin
If checked, a line is displayed on the right side of the editor signifying the right margin.
Font
Sets the font name to be used for the editor
Size
Sets the font size

3.5.3.6.5 Colour Options

The Colour Options sections covers the colour and other font settings for the various syntax
elements of the editor.

' & Options I& |

- Environment Options
i b G Element: Comment v

i Display

Foreground Color : Background Caolor :
Green - White -
i Project Defaults L2 o
... Debugger Options
b Text attributes

[T Beld [F]1talic [underline

Restore defaults..

Element

.

Sets the element where the current settings will apply.
Foreground Colour

Sets the text colour of the selected element.
Background Colour

Sets the text background colour of the selected element.
Bold

Sets the element into bold font style.
Italic

Sets the element into italic font style.

Copyright © 2012 Future Technology Devices International Ltd. 190

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxXx

Underline

Sets the element into underline font style.
3.5.3.7 Plugins
3.5.3.7.1 Code Inspector

Introduction

Code Inspector displays an overall hierarchical representation of the current application code
structure. The treeview displays references to user functions/variables/data types as well as VOS
kernel functions and their appropriate variables/data types. Double clicking items within the
treeview will open the appropriate file containing the reference and highlight the relevant text within
the editor. Code Inspector runs as a realtime thread on user code therefore, after saving changes
to an application, the Code Inspector treeview will be updated appropriately.

Launching Application

The plug in comes as part of the VNC2 toolchain installation. The application appears as an icon
within the View menu of the IDE menu items. To launch the application click on the Code Inspector
icon. Figure 1 shows the main screen after launching the application. The treeview will be updated
automatically when a project is opened and a C file is opened within the editor.

Codelnspeckor ax

=

Figure 1 - Code Inspector Overview
Toolbar

The Toolbar menu allows for customization of the Code Inspector treeview.

Sort Alphabetically Sorts the list of functions and data types in A-Z alphabetical
1A order.
z
Group by Type Groups the items within the treeview by type.

Copyright © 2012 Future Technology Devices International Ltd. 191

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Show Function/Variable |Shows the return type of functions and the type of variables.

:? Types
Go To Definition Jumps to the file containing the current item highlighted within
", the treeview.

Treeview Symbols

The following key is used for items within the treeview:

[Structure

R |Enum

=1 | Enum Value

Variable

#+ | Function Prototype

#¢ | Function

{» |Label

3.5.3.7.2 Thread Manager
Introduction

Thread Manager displays a snap-shot of the state of the application currently running on a VNC2.
Each list item corresponds to a thread present on the current system providing feedback on thread
activity and the overall system activity. Thread Manager can be used as a debugging tool to
determine: blocked threads that have halted system activity, % of time spent running threads and
thread stack usage.

Launching Application

The plug in comes as part of the VNC2 toolchain installation. The application appears as an icon
within the View menu of the IDE menu items. To launch the application click on the Thread Manager
icon; Figure 1 shows the main screen after launching the application.

.
i ThreadManager : @

| Thread Mame Priority | State Thread Twpe ZPU (%) | Peak Stack (Bwtes) | Current Stack (Bytes)
Threads: CPL:

Figure 1 - Thread Manager Overview

System Profiling

Copyright © 2012 Future Technology Devices International Ltd. 192

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

System profiling starts as soon as the vos_start _schedul er function is called within an application.
Figure 2 shows the Philosophers sample running with the Thread Manager plug in open.

=%

Current Stack (Bytes)

2 ThreadManager
| Thread

Thread Tvpe

Idle Thread =

Peak Stack (Bytes)

Application Thread
Application Thread

g4 200

(<] i |

Threads: 5 CPU: 0.50% |

Figure 2 - Thread Manager Philosophers

Each of the threads in the system appears as an item in the list view; this list is inclusive of the Idle
Thread which is present in every application as part of the VOS kernel.

Thread information is sub-divided into the following categories:

Thread Name: Threads that are created using the vos_create_thread_ex function allow a pointer to
a NULL terminated C-style string to be passed to the kernel. The name passed will be displayed
within this column. The maximum number of characters for this string is 64 including the NULL
terminating character.

Priority: All applications are made up of Application Threads, System Threads and a single VOS Idle
Thread. Application threads are created by the user and have a priority of 1 to 31. System Threads
form part of driver internals and are not controlled by the user, they have a priority greater than 31.
The VOS Idle Thread has a priority of 0 and runs when every other thread in the system is unable to
run i.e. blocked or delayed; the idle thread is always ready to run.

State: The current state of a thread falls into the following sub-categories:

Blocked The thread has called a kernel function that blocks until completion.
Ready The thread is ready to run.
Running The currently running thread.

Calling vos_delay msecs() on a thread will place it in the delay list.

Thread Type: Thread type can be one of the following: Application Thread, System Thread or VOS
Idle Thread.

CPU (%): The percentage of time that the CPU spends servicing each thread. The higher the value
in the VOS Idle Thread row the more time the CPU is spending blocked or delayed and as a result
the less time spent servicing application threads.

Peak Stack (Bytes): The peak amount of stack that each thread has used out of the memory
allocated. This value allows for tuning of thread stack size allocation; stack is allocated during a
vos create thread() or vos create thread ex(), therefore the memory allocated can be tuned with
respect to the value within the Peak Stack column. The document Vinculum Il Memory Management
provides further explanation of thread stack allocation.

Current Stack (Bytes): The amount of stack that is currently being used by the thread.

Status

The Thread Manager also reports a system status in the status bar of the window. This status is
used to indicate an unrecoverable VOS system error that has occurred.

The error codes are as follows:

Copyright © 2012 Future Technology Devices International Ltd. 193

http://www.ftdichip.com/Support/Documents/AppNotes/AN_157_Vinculum%20II%20Memory%20Management.pdf

FTDI Document Reference No.: FT_000289

Vinculum 1l User Guide

Clearance No.: FTDI# xxx

Chip AN_151 User Manual Version 2.0.0

OXFF - Ready There are no threads available to run.
List Empty
OxFE -_Malloc Failed to malloc enough memory in RAM.
Devices
OxFD - Thread A thread that returned has not be found on the thread list.
Not Found

Ready List Empty and Thread Not Found are both indicative of some kind of memory problem in the
system, e.g. an invalid pointer, that has resulted in overwriting of system memory. Malloc Devices
occurs when there has not been enough RAM left in the system to allocate for a device driver.

3.5.3.8 Keyboard Shortcuts

These are the keyboard shortcuts to perform various functions in VinIDE :

CTRL-SHIFT-N New Project
CTRL-N New File
CTRL-SHIFT-S Save All
CTRL-S Save File
CTRL-F Find

CTRL-C Copy

CTRL-V Paste

CTRL-X Cut

CTRL-Z Undo

CTRL-Y Redo
CTRL-SHIFT-O Open Project
CTRL-O Open File
CTRL-H Replace

F7 Build Project
CTRL-SHIFT-F11 Project Options
CTRL-TAB Next Tab
CTRL-SHIFT-TAB Previous Tab
CTRL-F4 Close Tab

F3 Search Again
FO Breakpoint

F1 Help

CTRL-0 Select Project Manager
CRTL-1 Select Properties Panel

Copyright © 2012 Future Technology Devices International Ltd. 194

FTDI

Document Reference No.: FT_000289
Vinculum 11 User Guide

Clearance No.: FTDI# xxx

Chip AN_151 User Manual Version 2.0.0

CTRL-2 Select Messages Panel
CTRL-3 Select Watch Panel
CTRL-4 Select Memory Panel
CTRL-5 Select Breakpoint List
F5 Start

F10 Step

F11 Step Into

SHIFT-F11 Step Out

SHIFT-F12 Run To Cursor
CTRL-F4 Show Disassembly
SHIFT-F6 Reset

F6 Stop

SHIFT-F5 Pause

F4 Flash

CRTL-ALT-L Open Libraries
CRTL-ALT-H Open Header Files
CRTL-P Print

3.6 VinPrg Programmer

The programmer tool allows a command line user, script or application to program code into the
Flash on a VNC2.

The ROM file can be programmed at a specific offset. However, all programs are linked at a fixed
address, so this must match the offset supplied to the linker (with the -B parameter). One other
feature is the entire contents of flash can be cleared prior to programming.

During programming an indication of the percentage complete is echoed to the command line. This
does get output at a fixed percentage interval, rather after a certain number of bytes and is
calculated relative to the size of the file which is being programmed. There are no backspaces or
carriage returns sent to overwrite the previous value displayed.

3.6.1 Programmer Command Line Options

The following command line options are supported in the VinPrg Programmer:

VinPrg [options] file

Option Description

-d "nanme" Select debugger hardware interface description

-0 of fset Offset to start of program in Flash ROM (in words)

-1 length Optional maximum length of program (in words)

-w of f set Display contents of word at offset in Flash ROM (for verification)
-m addr Show 64 bytes of RAM from address specified

-a List available debugger hardware interfaces

Copyright © 2012 Future Technology Devices International Ltd. 195

Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

-c Clear contents of Flash ROM before programming
-r Reset device after programming
Examples

Show available devices for programming then program file "myprog.rom" into Flash ROM:

C:\>vinprg -a

Avai | abl e debugger interfaces:

V2EVAL Board C (FTTPI 00OC) VNC2 64-pin package
C:\>vinprg -d "V2EVAL Board C' nyprog.rom

Fl ashi ng 354 bytes

Erasi ng Fl ash. ..

Fl ash erase done.

Witing Flash...

100

Flash write done.

Program code into offset 0x1f000 (word offset):

C:\>vinprg -d "V2EVAL Board C' testcases\test.rom-o Ox1f000
3.7 VinUser Customiser
The VinUser Customiser allows access to the userDataArea referred to in the Special VNC2 Reference

of the linker. This is 8 words reserved in the ROM file which can be used by user applications without
restrictions.

The customiser will allow a text string or hexadecimal values to be written to this area. The entire
area must be written, partial accesses to bytes are not supported.

This area is particularly suited to storing serial numbers, version numbers or customisation
information.

3.7.1 Customiser Command Line Options

The following command line options are supported in the VinUser Customiser:

Vi nUser [options] file

Option Description

-s "data" Specify a string for user data area

-x val ue Specify a hexadecimal value to be programmed into the user data area
Examples

Set a string in the user data area of a ROM file:

C:\>vinuser -s "V1.0.0 Test 1" test.rom

Program a hexadecimal value into the user data area:
C:\>vinuser -x 4445464748494a4b4c4d4e4f 61626364 test.rom

Copyright © 2012 Future Technology Devices International Ltd. 196

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

e 7
-
E 4
k]

]

a

_\

m
L\

Clearance No.: FTDI# xxx

S\

4 Firmware

The VNC2 firmware model consists of three layers.

VOS Kernel. This is responsible for managing hardware resources, interrupts and scheduling.

ETDI Drivers. These control either a hardware resource or other device drivers. They provide a
programming interface to higher level code.

FTDI Libraries.

User Applications. This is where the functionality of the firmware is provided by controlling various
device drivers.

The user application calls an APl to communicate with device drivers which access the hardware
resources. The kernel provides an API for device drivers and user applications to control the
operation of the VNC2.

Some device drivers require a thread to control a hardware resource - others are able to work using
only events (interrupts and API calls).

User applications are allowed to run multiple threads.

Libraries -
l BEUIEE Hanager l

e

Hardware

Int_erfacE UART USE Slave
Drivers

Upper
Level
Drivers

4.1 VOS Kernel

The VNC2 RTOS (VOS) is a pre-emptive priority-based multi-tasking operating system.

VOS has the following features:

Priority based tasks. Tasks are run by a Kernel Scheduler which decides which tasks will run
based on their priority. The scheduler also has the ability to provide priority boosts to low priority
tasks from being completely denied processor time. Tasks can also be deliberately delayed.

Task switching. When a task’s allotted processor time has elapsed, the task is paused and the
next task in the ready list allowed to run. In order for this to happen, VOS will save the context of
the running task and restore the context of the task to be run. The time which a task is allocated
depends on a value called the quantum.

Task synchronisation. Several mechanisms are provided:
0 Mutexes are provided so tasks can achieve exclusive access to a resource.
0 Semaphores are also available for inter-task communication.

0 Condition Variables are provided to allow tasks to synchronise based on the value of data.

Copyright © 2012 Future Technology Devices International Ltd. 197

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

0 Critical Sections are provided as a method of claiming additional CPU time beyond the normal
allotted time slice for a task to run, allowing important code paths to complete before allowing
a task switch.

e Device Manager. The device manager provides the interface between user application code and
the device drivers. When a user application successfully opens a device, the device manager
allocates a handle to the device that the application can use for subsequent communication.
Opening a device obtains exclusive access to the device. User applications have access to a
standard set of device driver functions via the device manager:

0 vos dev open() — obtain exclusive access and a handle to the device.

0 vos_dev_close() — release the device handle and relinquish exclusive access.
0 vos dev read() — read data from the device.
0 vos_dev_write() — write data to the device.
0 vos dev ioctl() — device specific operations.
0 interrupt — hardware interrupt handler.
4.1.1 VOS Definitions

There are certain definitions for variable and function types which are used throughout the kernel
and drivers. They are available to applications in the vos.h header file.

Null pointer and logic definitions:

#define NULL 0
#defi ne TRUE 1
#defi ne FALSE 0

Variable type definitions:

#define uint8 unsi gned char
#define int8 char

#define intl6 short

#define uintl6 unsi gned short
#defi ne uint32 unsi gned i nt
#define pvoid unsi gned char *

Function type definitions:

typedef uint8 (*PF)(uint8);

typedef void (*PF_OPEN)(void *);

typedef void (*PF_CLOSE)(void *);

typedef uint8 (*PF_I OCTL) (pvoid);

typedef uint8 (*PF_IO)(uint8 *, unsigned short, unsigned short *);
typedef void (*PF_INT)(void);

4.1.2 Kernel Configuration

The kernel maintains lists and data structures which must be initialised prior to use. The vos init()
call is used to initialise the kernel data and also set the task switching quantum and tick count.

The tick count is the number of milliseconds the kernel will wait before evaluating the quantum of a
process. The quantum is the number of kernel ticks for which a process will run until it is either:

e interrupted

e blocked - the thread calls a kernel function that blocks until completion e.g. vos_lock_mutex() or
vos wait semaphore()

e pre-empted - a higher priority task has become unblocked by an interrupt
e delayed - a call to vos_delay_msecs() will make the process delay

When any of the above occur or at the expiry of the quantum the kernel will switch to the next
highest priority task which is not blocked or delayed. This is called task switching.

Copyright © 2012 Future Technology Devices International Ltd. 198

Document Reference No.: FT_000289
FTDI Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

Clearance No.: FTDI# xxx

The default tick count is one and default quantum is 50. These values give balanced performance for
general purpose programs that may want to perform some data processing as well as input and
output operations. Decreasing the quantum will increase the number of task switches which occur
and may allow multiple threads to collaborate better in sharing data or resources.

It is not recommended to alter the tick count from it's default value unless the application is to
continue processing at the detriment of responsiveness.

There is very little performance overhead in switching tasks so a quantum of 10 or below is possible
and can be beneficial in some systems. The quantum will have a larger effect on applications where
the multiple threads share the same priority level and where a thread performs significant amounts
of processing without blocking or delaying.

Where the time required to respond to an event is critical a tick count of 1, a quantum of 10
combined with a thread priority scheme where the more important threads have a higher priority will
provide a good solution.

4.1.2.1 vos_init()

Syntax
void vos_init(uint8 quantum wuintl6 tick_cnt, uint8 num.devices);
Description

Initialise the kernel and kernel memory structures.

Parameters

guant um

The quantum parameter is used to set the time period in milliseconds between task
switches by the kernel.

tick_cnt
The tick_cnt value specifies the number of milliseconds (timer ticks) between context
switches by the scheduler.

num devi ces

The device manager is initialised with the number of devices passed in the num_devices
parameter.

Returns

The function does not return any value.

Comments

The following definitions, providing default values, are available for use in vos_init() function calls:

VOS_TI CK_I NTERVAL
VOS_QUANTUM

The num_devices parameter reserves slots for drivers which are managed by the device manager.
Each and every slot must be configured using the vos_dev_init() function before the scheduler can
be started or any interrupts enabled.

4.1.2.2 vos_set _idle_thread_tcb_size()

Syntax

void vos_set_idle_thread_tcb_size(uintl6 tcb_size);
Description
Adjust the RAM allocated for the idle thread

Parameters

tcb_size

Copyright © 2012 Future Technology Devices International Ltd. 199

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The amount of memory that is to be allocated for the idle thread stack in bytes.

Returns

The function does not return any value.

Comments

The idle thread is a special system thread present on all applications, this thread runs when every
other thread in the system is either blocked or delayed. As well as this, the idle thread also controls
peripheral interrupt handling.

By default the total stack allocation for the idle thread is 512 bytes, including 56 bytes for the TCB
and system data area. It is possible to use the Thread Manager to monitor the peak stack usage of
the idle thread. Ifitis seen that the idle thread does not require all of its allocated stack, some of
the memory can be reclaimed using the vos_set _idl e_thread_tcb_size() function.

4.1.3 Thread Creation

A thread is created with the vos create thread() call. No threads will run until the Kernel Scheduler
is started.

Each thread has a block of memory set aside for it's stack and state information. This is allocated
dynamically by vos create thread().

Multiple threads can be run, the only limitation is the amount of memory available for them.

Each thread can be allocated a priority. Higher priority threads have a higher priority value assigned
when they are created. Values less than 32 may be used by an application, however, zero is
reserved for the idle task.

Optional parameters may be passed to a thread. The number of bytes for the arguments is specified
followed by the arguments themselves.

If multiple threads share the same priority level then they will be run sequentially in a round robin
fashion. To allow a thread to respond to an event more quickly increase it's priority relative to less
important threads.

As a general guideline avoid tight code loops where a thread is polling for an event. It is far better to
use a kernel synchronisation event to notify a thread. If the higher priority thread is polling without a
mutex, semaphore, condition variable or delay then it will prevent the lower priority thread from
running causing a deadlock situation. Where tight loops are unavoidable add in a short delay call to
vos delay msecs() to allow another thread a short time to perform calculations.

4.1.3.1 vos_create_thread()

Syntax

vos_tcb_t *vos_create_thread(uint8 priority, uintl6é stack, fnVoidPtr function, intl6 arg_size,
Description

Create a thread to call a function and pass optional parameters.

Parameters
priority
The priority parameter specifies a kernel priority to run the thread at.

st ack
The stack parameter is the size of the stack to allocate to the thread.

function
The function is a pointer to a function to run as the entry point of the thread.

arg_si ze
Specifies the size of the optional parameters to pass.

Returns

The function returns a pointer to a kernel task control block.

Copyright © 2012 Future Technology Devices International Ltd. 200

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Comments

The memory for thread stack space is reserved and initialised by vos_create_thread().

The function pointed to must have a return type of void. If the function pointed to has a return
value, this will corrupt the call and incorrect parameters will be passed to the function.

If optional parameters are not required for the thread then set arg_size to zero. Multiple parameters
may be passed with the total size of them set in arg_size.

Tasks are not actually started until vos_start_scheduler() is called.

The priority of the thread specified should be greater than zero and less than 32. A higher number
indicates a higher priority.

Example

#define SI ZEOF_TASK_1_MEMORY 0xa00
#define SI ZEOF_TASK_2_MENMORY 0x800

voi d taskl();
voi d task2(int);

vos_tcbhb_t *tctl, *tch2;

voi d mai n(voi d)

{

int x = 4,

vos_i ni t (VOS_QUANTUM VOS_TI CK_I NTERVAL, 0);

tcbl = vos_create_t hread(30, SIZEOF_TASK 1 MEMORY , taskl, 0);

tcb2 = vos_create_thread(28, SIZEOF_TASK 2_MEMORY , task2, sizeof(int), Xx);
}

4.1.3.2 vos_create_thread_ex()

Syntax

vos_tcb_t *vos_create_thread_ex(uint8 priority, uintl6 stack, fnVoidPtr function, char *nane,
Description

Create a named thread to call a function and pass optional parameters.

Parameters
priority
The priority parameter specifies a kernel priority to run the thread at.

st ack
The stack parameter is the size of the stack to allocate to the thread.

function
The function is a pointer to a function to run as the entry point of the thread.

name
A pointer to a name string to attach to the thread.

arg_si ze
Specifies the size of the optional parameters to pass.

Returns

The function returns a pointer to a kernel task control block.

Comments

vos_create_thread_ex() performs the same functions as vos_create_thread() but with additional
feature of allowing a name string to be attached to the thread. This is particularly useful when using

Copyright © 2012 Future Technology Devices International Ltd. 201

i nt

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

the VinIDE thread manager plug in as it will extract and display the thread name alongside the stack
usage and CPU usage for the thread, so each uniquely named thread is easily identifiable.

Example

#def i ne SI ZEOF_TASK_1_MEMORY 0xa00
#define SI ZEOF_TASK_2_MENMORY 0x800

void taskl()
voi d task2(int);

vos_tcbhb_t *tctl, *tcbh2;

voi d mai n(voi d)

{

int x = 4;

vos_i nit (VOS_QUANTUM VOS_TI CK_I| NTERVAL, O0);

tcbl = vos_create_thread_ex(30, SIZEOF_TASK_ 1 MEMORY , taskl, "1st Thread\0", 0);

tcb2 = vos_create_thread_ex(28, SIZEOF_TASK_2_MEMORY , task2, "2nd Thread\0", sizeof(int),
}

4.1.4 Kernel Scheduler

When scheduler starts control is passed from the main() function to kernel, threads are started.
Control never returns to main().

Delay timers, semaphores, mutexes and condition variables cannot be used before the scheduler is
started.

All devices declared in the num devi ces parameter of the call to vos _init() must be initialised and
registered with the Device Manager before vos_start scheduler() is called.

Delays may be added to any thread using the vos_delay msecs(), and another thread may cancel a
delay in a thread using vos_delay cancel(). Delays may be longer than requested due to a higher
priority thread running.

4.1.4.1 vos_start_scheduler()

Syntax

voi d vos_start_schedul er(void);

Description

Pass control to the kernel scheduler.

Parameters

There are no parameters required.

Returns

The function does not return any value.

Comments

Control is passed to the kernel scheduler. The function will never return to the calling routine. This is
normally found in the main() function of an application.

4.1.4.2 vos_delay_msecs()

Syntax

uint 8 vos_del ay_msecs(uint1l6 ns);

Copyright © 2012 Future Technology Devices International Ltd. 202

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description

Delay a thread for a minimum period of time.

Parameters

s
The ms parameter specifies the minimum number of milliseconds which the current thread
will be delayed by. It may delay a longer time depending on the state of other threads.

Returns

The function returns zero for normal completion or non-zero if another thread has cancelled the
delay.

Comments

This may only be called from a thread after the kernel scheduler has started.

Example
voi d power OnTest ()
{
uint 16 del ay;
del ay = 100;
if (sendPowerOn() == 1)
{
/1l add an extra 500ms to del ay
del ay += 500;
}
/1l wait until power good
vos_del ay_nsecs(del ay);
}

4.1.4.3 vos_delay_cancel()

Syntax
voi d vos_del ay_cancel (vos_tch_t *tch);
Description

Cancel a delay in another thread.

Parameters
tchb
The tcb parameter specifies another thread which may be in a delayed state.
Returns

The function does not return any value.

Comments

This may only be called from a thread after the kernel scheduler has started.

4.1.5 Mutexes

Mutexes are used for synchronisation or to enforce mutual exclusion, and hence serialise access to
a shared resource. The resource is not actually specified for a particular mutex, it is up to the
programmer to ensure that the mutex is used for all instances of access to the resource.

Mutexes must be initialised before use but can be initialised as locked or unlocked using
vos init _mutex().

Copyright © 2012 Future Technology Devices International Ltd. 203

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

A vos lock mutex() request will block until the mutex is unlocked. However, a vos trylock mutex()
will return and report if a mutex is locked. If the mutex is free then it will be locked.

The lock status of a mutex can be tested using the vos trylock mutex() feature followed by a
vos unlock mutex() call if the mutex was free.

The mutex is defined as:

typedef struct _vos_nutex_t {

vos_tcb_t *threads; /1 list of threads bl ocked on nutex
vos_tcb_t *owner; /'l thread that has | ocked nutex

uint8 attr; /1l attribute byte

uint8 ceiling; /1l priority for priority ceiling protocol

} vos_nutex_t;

Advanced mutex operations are available to raise or lower the priority ceiling allowing the priority of
the mutex to increase until it is processed.

Example

Consider an application with two threads which require to be synchronised. The first thread is used
to initialise some application specific data and then both threads can begin operation. A mutex is
used to signal thread th2 that the first thread thl is complete.

vos_nut ex_t nReady;

voi d mai n(voi d)

{
vos_i ni t (VOS_QUANTUM VOS_TI CK_|I NTERVAL, 1);
vos_set _cl ock_frequency(VOS_48NVHZ_CLOCK_FREQUENCY) ;

/1 initialise mutex to be | ocked

vos_i nit _nut ex(&rReady, 1);

vos_create_t hread(30, MEMIHREAD1, thl, 2, &nmReady);
vos_create_t hread(30, MEMIHREAD2, th2, 2, &nmReady);

vos_start_schedul er();
}
void thl(vos_nutex_t *m

/1 performinitialisation

vos_unl ock_nut ex(m;

/1 continue thread tasks
}
void th2(vos_nutex_t
{

/1 wait for thl to conplete initialisation

vos_l ock_mutex(m;

vos_unl ock_nmut ex(m ;

/1 continue thread tasks

*m

}
Example
Another example is where access to a variable is controlled or gated by a mutex.
vos_nutex_t nBusy,
char chBusy;
voi d mai n(voi d)
{

vos_i nit (VOS_QUANTUM VOS_TI CK_I NTERVAL, 1);
vos_set _cl ock_frequency(VOS_48NMHZ_CLOCK_FREQUENCY) ;
/1 initialise mutex to be unl ocked
vos_i nit _nut ex(&Busy, 0);
vos_create_t hread(30, MEMIHREAD1,
vos_create_t hread(30, MEMIHREAD2,
vos_start_schedul er();

thi,
th2,

0);
0);

}
voi d dpl()
{
while (1)
{

Copyright © 2012 Future Technology Devices International Ltd. 204

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

/1 lock chBusy until we wite it
vos_I| ock_nut ex(&Busy) ;

chBusy = "'a';

vos_unl ock_nut ex(&Busy) ;

/1 continue thread tasks

}
}
voi d dp2()
while (1)
{
/1 don't read chBusy unless it's | ocked
vos_| ock_nut ex(&mBusy) ;
if (chBusy == "a') chBusy = 'b';
vos_unl ock_nut ex(&Busy) ;
/1l continue thread tasks
}
}

4.1.5.1 vos_init_mutex()

Syntax
void vos_init_mnmutex(vos_mutex_t *muint8 state);
Description

Initialises a mutex and sets it's initial value.

Parameters

m
The m parameter is a pointer to a mutex structure.

state

The value of state is the initial value of the mutex after initialisation.

Returns

The function does not return any value.

Comments

The initial value of the mutex must be one of the two options:

VOS_MUTEX_UNL OCKED
VOS_MUTEX_LOCKED

4.1.5.2 vos_lock_mutex()

Syntax
voi d vos_l ock_mutex(vos_mutex_t

* m) :
Description

Performs a lock operation on a mutex to prevent any other process from locking it. If the mutex is
already locked then the function will block until the mutex is released by the other process.

Parameters

m
The m parameter is a pointer to a mutex structure.

Returns

The function does not return any value.

Copyright © 2012 Future Technology Devices International Ltd.

205

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Comments

To test if a mutex is already locked and therefore prevent a locking situation use the
vos_trylock_mutex() function.

4.1.5.3 vos_trylock _mutex()

Syntax

uint8 vos_trylock_mutex(vos_nutex_t *m;

Description

Tests the lock status of a mutex and performs a lock operation if it is unlocked. If it is already locked
then it will return immediately.

Parameters

m
The m parameter is a pointer to a mutex structure.

Returns

The function returns O if the mutex was available and is now locked. Otherwise, 1 will be returned
and the mutex will continue to be locked by another process.

Comments

The following definitions are available for testing the return value of vos_trylock_mutex().

#define VOS_MUTEX_UNLOCKED 0
#define VOS_MUTEX_LOCKED 1

4.1.5.4 vos_unlock_mutex()

Syntax

voi d vos_unl ock_nutex(vos_nutex_t *m;

Description

Performs an unlock operation on a mutex allowing it to be locked by other processes.

Parameters

m
The m parameter is a pointer to a mutex structure.

Returns

The function does not return any value.

Comments

The next process with the highest priority which is waiting on the mutex with the vos_lock_mutex()
function will lock the mutex.

4.1.5.5 vos_get_priority_ceiling() Advanced
Syntax
uint8 vos_get _priority_ceiling(vos_nutex_t *m;

Description

Returns the priority ceiling of a mutex.

Copyright © 2012 Future Technology Devices International Ltd. 206

Vinculum Il User Guide
Chip AN_151 User Manual Version 2.0.0

FTDI Document Reference No.: FT_000289

Clearance No.: FTDI# xxx

Parameters

m
The m parameter is a pointer to a mutex structure.

Returns

The function returns the priority ceiling of the mutex.

Comments

The priority ceiling is the priority to which a mutex is allowed to rise to prevent deadlock situations.

4.1.5.6 vos_set_priority ceiling() Advanced

Syntax
void vos_set_priority_ceiling(vos_nutex_t *muint8 priority);
Description

Sets the priority ceiling of a mutex.

Parameters

m
The m parameter is a pointer to a mutex structure.

priority
Specifies the maximum priority to which a thread blocked on a mutex can rise to.
Returns

The function does not return a value.
Comments

4.1.6 Semaphores

A semaphore is similar to a mutex but has a count value associated with it. This allows an application
to specify a number of concurrent access to a shared resource or to queue multiple events to be
processed.

Semaphores must be initialised before use with an initial count value using vos _init_semaphore().

An ideal use of a semaphore is when multiple resources are available and need to be tracked to
make sure that only the required number of these resources are in use at any one time.

A call to vos wait _semaphore() will block until a semaphore is available. A call to
vos wait semaphore ex() can be used for waiting on either one semaphore to be available from a
list or all semaphores in a list to become available.

A semaphore is defined as:

typedef struct _vos_semmphore_t {
intl6 val;
vos_tcb_t *threads;
int8 usage_count;

} vos_semaphore_t;

typedef struct _vos_semaphore_list_t {
struct _vos_semaphore_list_t *next;
int8 siz;
uint8 flags; // bit 7 set for WAIT_ALL cl ear for WAI T_ANY
vos_semaphore_t *list[1];
} vos_semaphore_list_t;

The Philosophers Sample application shows semaphores used to do multi-process synchronisation.

Copyright © 2012 Future Technology Devices International Ltd. 207

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

An example of a semaphore would be a buffer containing 16 bytes. A producer thread will add bytes
to the buffer and a consumer thread remove bytes. The producer must not write more than 16
bytes, but can write more bytes after the consumer takes them off the stack.

/'l resource senmaphore
vos_semaphore_t senBuf;
/1 the resources to protect
char buffer[16];
char *pBuf;
/1 mutex to protect buffer pointer
vos_nut ex_t nBuf;
voi d producer();
voi d consuner();
voi d mai n(voi d)
{
vos_ini t (VOS_QUANTUM VOS_TI CK_I| NTERVAL, 1);
vos_set _cl ock_frequency(VOS_48VHZ_CLOCK_FREQUENCY) ;
/1 initialise semaphore to be sizeof buffer
vos_init_semaphore(&senmBuf, sizeof(buffer));
vos_init_mnut ex(&Buf, 0);
pBuf = &buffer[O0];
vos_create_t hread(30, MEMIHREAD1, producer, 0);
/1l consumer thread has a lower priority than producer
vos_create_t hread(29, MEMIHREAD2, consuner, 0);
vos_start_scheduler();
}
voi d producer ()
{
char queueCount;
while (1)
{
vos_wai t _semaphor e(&senBuf) ;
vos_| ock_mut ex(&mBuf) ;
*pBuf = queueCount;
pBuf ++;
vos_unl ock_nut ex(&Buf) ;
queueCount ++;
}
}
voi d consumer ()
{
char myCount;
while (1)
{
vos_| ock_mut ex(&rBuf) ;
pBuf - -;
nmyCount = *pBuf;
vos_unl ock_nut ex(&Buf) ;
vos_si gnal _semaphor e(&senBuf) ;
}
}

4.1.6.1 vos_init_semaphore()

Syntax

voi d vos_init_semaphore(vos_semaphore_t *semintl1l6 count);

Description

Initialises a semaphore and sets its initial value

Parameters

sem

Pointer to a semaphore structure. The initial value of the semaphore is set to count.

Copyright © 2012 Future Technology Devices International Ltd. 208

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Returns

There is no return value.

Comments

Example

The following code fragment shows how to declare a semaphore and initialise it with an initial value
of 1.

vos_semaphore_t sem
vos_i nit_semaphore(&sem 1);

4.1.6.2 vos_wait_semaphore()

Syntax

voi d vos_wait_semaphore(vos_semaphore_t *s);
Description
Perform a wait operation on a semaphore. The semaphore's count field is decremented and the
current thread is blocked if the value of count is less than zero.
Parameters

sem

Pointer to a semaphore structure.

Returns

There is no return value.
Comments
4.1.6.3 vos_wait_semaphore_ex()

Syntax
int8 vos_wait_semaphore_ex(vos_semaphore_list_t *I);
Description

Perform a wait operation on multiple semaphores. The semaphores are passed to this function on a
list, and the wait operation can be performed for all semaphores on the list or any semaphore on the
list.

Parameters
|
Pointer to a semaphore list structure.

Returns

For VOS_SEMAPHORE_FLAGS_WAIT_ANY, return index in the semaphore list of the semaphore that
was signalled.

For VOS_SEMAPHORE_FLAGS_WAIT_ALL, return O.

Comments

Between repeated calls to vos_wait_semaphore_ex the pointers stored in the list array require to
be updated. All elements in this array are set to zero before the vos_wait_semaphore_ex function
returns. The next, siz and flags members are not modified and do not need to be updated.

Copyright © 2012 Future Technology Devices International Ltd. 209

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Example

The following code fragments show how to use vos_wait_semaphore_ex.
In the first example the current thread will block until either seml or sem2 is signalled.

#defi ne NUMBER_OF_SEMAPHORES 2

vos_semaphore_list_t *sem.list; /1l pointer to semaphore |i st
vos_semaphore_t senl;

vos_semaphore_t sen;

int8 n;

vos_init_semaphore(&semt, 0) ; /1 initialise semphores
vos_i nit _semaphore(&sen?, 0);

sem|list = (vos_semaphore_list_t *) mall oc(VOS_SEMAPHORE_LI ST_SI ZE(NUMBER_OF _SEMAPHORES) ;
sem | ist->next = NULL; /1 initialise semaphore |ist

sem |ist->siz = NUMBER OF_SEMAPHORES; /'l 2 semaphores

sem |ist->flags = VOS_SEMAPHORE_FLAGS_WAI T_ANY;

semlist->list[0] = &seml;

semlist->list[1l] = &senk;

n = vos_wait_semaphore_ex(semlist);

if (n==0) {

/'l seml has signalled
}
else if (n ==1) {

/'l sem2 has signalled
}

free(sem.list);

In the second example the current thread will block until both sem1 and sem2 are signalled.

#def i ne NUMBER_OF_SEMAPHORES 2

vos_semaphore_list_t *sem.list; /1 pointer to semaphore |ist
vos_semaphore_t seni;

vos_semaphore_t sen?;

int8 n;

vos_i nit _semaphore(&semt, 0); /1 initialise semaphores
vos_init_semaphore(&sen?, 0);

sem |ist = (vos_semaphore_list_t *) malloc(VOS_SEMAPHORE_ LI ST_SI ZE(NUMBER_OF _SEMAPHORES) ;
sem | ist->next = NULL; /1 initialise semaphore |ist

sem |ist->siz = NUMBER_OF_SEMAPHORES; /1 2 semaphores

sem |ist->flags = VOS_SEMAPHORE_FLAGS_WAI T_ALL;

sem |list->list[0] = &senl;

sem |list->list[1l] = &sent;

n = vos_wait_semaphore_ex(sem.|list);

if (n==0) {
/1 seml and sen2 have signalled
}

free(semlist);
4.1.6.4 vos_signal_semaphore()

Syntax
voi d vos_si gnal _semaphore(vos_semaphore_t *s);
Description
Perform a signal operation on a semaphore. The count variable is incremented and if the value of count is less

than or equal to zero then the first thread on the semaphore’s blocked list is removed and placed on the ready
list.

Copyright © 2012 Future Technology Devices International Ltd. 210

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Parameters
sem
Pointer to a semaphore structure.
Returns

There is no return value.

Comments

If, as a result of vos_signal_semaphore, a thread with a higher priority than the current thread
becomes ready to run, then a task switch will occur and the higher priority thread will become the
current thread.

4.1.6.5 vos_signal_semaphore_from_isr()

Syntax
voi d vos_signal _semaphore_from.i sr(vos_semaphore_t *s);
Description

Perform a signal operation on a semaphore. The count variable is incremented and if the value of
count is less than or equal to zero then the first thread on the semaphore’s blocked list is removed
and placed on the ready list.

Parameters
sem
Pointer to a semaphore structure.

Returns

There is no return value.

Comments

vos_signal_semaphore_from_isr is used to signal a semaphore from an interrupt service routine. It
differs from vos_signal_semaphore in that no task switch can occur if, as a result of
vos_signal_semaphore_from_isr, a thread with a higher priority than the current thread becomes
ready to run. In this case, the task switch will occur after the interrupt service routine has been
completed.

4.1.7 Condition Variables

Condition variables are used to synchronise threads based on the value of data. They are used in
conjunction with a mutex that allows exclusive access to the data value.

Condition variables must be initialised before use using vos init_cond var().

Calling vos wait cond var() will block until the condition variable becomes true. A mutex is passed in
this function which is used to provide exclusive access to the variable which is being tested. To
signal that a condition variable is true the vos signal cond var() function is called.

Type definition for condition variable:

typedef struct _vos_cond_var _t {
vos_tcb_t *threads;
vos_nutex_t *I| ock;
uint8 state;

} vos_cond_var _t;

Example

This is a pseudocode example that demonstrates how to use a condition variable. Typically, the
condition variable, mutex and data are initialised in a mainline routine. In this example, a thread
(not shown) produces a byte of data and calls add_byte() to store the data in a buffer. A second

Copyright © 2012 Future Technology Devices International Ltd. 211

FTDI
Chip

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

thread (not shown) calls read10bytes() to read 10 bytes of data from the buffer. These code
fragments provide a template for thread synchronisation using a condition variable in conjunction

with a mutex.

vos_cond_var _t readXferCV,
vos_nut ex_t readXferLock;

unsi gned short bytesAvail abl e;

mai n()

{

/1

/'l somewhere in mainline initialisation:
/1 initialise condition variable

I initialise mutex

Il initialise data

/1

vos_init_cond_var (& eadXferCV);
vos_i nit _nut ex(& eadXf er Lock, 0);
byt esAvai |l abl e = 0;

}
unsi gned char add_byte(unsigned char b)
{
I
/1l store byte in a buffer
I
I
/1 lock mutex and increnment bytesAvail able
I

vos_I| ock_nut ex(& eadXf er Lock) ;
++byt esAvai | abl e;

if (bytesAvailable >= 10) {

/1
/1l signal that 10 bytes are avail able
/1
vos_si gnal _cond_var (& eadXf er CV) ;
}
/1
/1 unl ock mutex
/1

vos_unl ock_nut ex(& eadXf er Lock) ;

unsi gned char readlObytes(char *xfer)

{
I
/1 lock mutex and check nunmber of bytes avail able
I
vos_| ock_mut ex(& eadXf er Lock) ;

if (bytesAvailable < 10) {

I

/1 wait on condition variable until 10 bytes are avail able

Copyright © 2012 Future Technology Devices International Ltd. 212

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

I
vos_wai t _cond_var (&r eadXf er CV, & eadXf er Lock) ;

}

I
/1 reach here when 10 bytes are avail abl e
I

vos_unl ock_nut ex(readXf erLock);

I
/1 copy data into transfer buffer and return
I

return OK;
}

4.1.7.1 vos_init_cond_var()

Syntax
voi d vos_init_cond_var(vos_cond_var_t *cv);
Description

Initialises a condition variable.

Parameters

cv
Pointer to a condition variable structure.

Returns

There is no return value.
Comments

Example

The following code fragment shows how to declare a condition variable and initialise it.

vos_cond_var _t cv;
vos_init_cond_var (&cv);

4.1.7.2 vos_wait_cond_var()

Syntax
void vos_wait_cond_var(vos_cond_var_t *cv,vos_mutex_t *m;
Description

Wait on the condition variable cv. The calling thread is blocked until another thread performs a
vos_signal_cond_var operation on cv.

Parameters

cv
Pointer to a condition variable structure.

Pointer to a mutex structure.

Returns

There is no return value.

Copyright © 2012 Future Technology Devices International Ltd. 213

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Comments

This function works in conjunction with vos_signal_cond_var to provide thread synchronisation based
on the value of data. Condition variables are always used in conjunction with a mutex that must be

locked when vos_wait_cond_var is called.

Example

See later.

4.1.7.3 vos_signal_cond_var()

Syntax
voi d vos_signal _cond_var(vos_cond_var_t *cv);
Description

Signal the condition variable cv.

Parameters

cv
Pointer to a condition variable structure.

Returns

There is no return value.

Comments

This function works in conjunction with vos_wait_cond_var to provide thread synchronisation based
on the value of data. Condition variables are always used in conjunction with a mutex. The mutex
must be locked before vos_signal_cond_var is called. After signalling the condition variable, a thread
that had previously called vos_wait_cond_var will be unblocked and made ready to run. The calling
function must unlock the mutex to allow the vos_wait_cond_var operation in the unblocked thread to

complete.

Example

See later.

4.1.8 Diagnostics

The kernel can return two types of diagnostic information for each thread in the system: CPU usage and stack

usage.

Information about CPU usage is returned from the system profiler. When the profiler is enabled, the count field
in the current thread’s system data area is incremented when a timer interrupt occurs. Thus the relative time
spent in each thread can be calculated by retrieving the count field for each thread on the thread_list.

Information about stack usage for a thread is returned from a kernel API. This information can be obtained for
a system during execution, and used to optimise the thread’s stack size.

The system data area is a block of reserved storage in the thread control block is used hold diagnostic

information. The system data area is defined as follows:

typedef struct _vos_systemdata_area_t {
struct _vos_system data_area *next;

Copyright © 2012 Future Technology Devices International Ltd. 214

FTDI
Chip

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_tch_t *tcbh;
ui nt 32 count;
} vos_system data_area_t;

4.1.8.1 vos_stack usage()

Syntax

unsi gned short vos_stack_usage(vos_tcb_t

Description

*tch);

Return the amount of bytes used in the stack area of the given thread.

Parameters

tch
Pointer to a thread control block structure.

Returns

Number of bytes used in thread's stack area.

Comments

Stack locations are initialised with the filler value 0x5f736f76. This is used by vos_stack_usage() to

calculate how much stack space an application is using.

Example

This example shows how to obtain the stack usage in a system.

/1 nunmber of application threads plus idle thread

#defi ne NUMBER_OF THREADS (NUMBER_OF_APPLI CATI ON_THREADS+1)

vos_tcb_t *tcbs[NUMBER OF_THREADS] ;

uint16 stack_bytes_used[NUMBER_OF_THREADS] ;

uint8 i;

/'l create application threads and save pointers to tcbs

for (i=1; i<NUMBER OF THREADS;, i++) {
tcbs[i] = vos_create_thread(..);

}

/'l get pointer to idle thread tcb and save it

tcbs[0] = vos_get_idle_thread_tchb();

/'l get stack usage for all threads
for (i=0; i<NUMBER_OF_THREADS; i ++) {

stack_bytes_used[i] = vos_stack_usage(tcbs[i]);

}
4.1.8.2 vos_start_profiler()

Syntax

void vos_start_profiler(void);

Description

Copyright © 2012 Future Technology Devices International Ltd. 215

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

For all threads, set the count field in the system data area to zero and enable the profiler.

Parameters

There are no parameters required.

Returns

There is no return value.
Comments

This function is used to obtain diagnostic information about CPU usage. After a call to vos_start_profiler
(), the count field in the current thread’s system data area is incremented when a timer interrupt occurs.

4.1.8.3 vos_stop_profiler()

Syntax

voi d vos_stop_profiler(void);

Description

For all threads, set the count field in the system data area to zero and enable the profiler.

Parameters

There are no parameters required.

Returns

There is no return value.
Comments

After a call to vos_stop_profiler(), the profiler is disabled and the count field in the current thread’s system
data area is not incremented when a timer interrupt occurs.

4.1.8.4 vos_get_profile()
Syntax

unsi gned | ong vos_get_profile(vos_tcb_t *tch);
Description

Return the count field in the system data area of the given thread.

Parameters

tch
Pointer to a thread control block structure.

Returns

The value of the count field in the given thread's system data area.
Comments

Afteracall to vos_start_profiler(), the count field in the given thread’'s system data area is incremented
every time a timer interrupt occurs when it is the current (running) thread in the system.

Copyright © 2012 Future Technology Devices International Ltd. 216

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

4.1.8.5 vos_get _idle_thread_tcb()

Syntax

vos_tcb_t *vos_get_idle_thread_tcb(void);

Description

Return a pointer to the idle thread TCB.
Parameters

There are no parameters required.

Returns

A pointer to the kernel idle thread control block.
Comments

In order to measure how much CPU time is being utilized by application threads, it is necessary to be able to
determine the CPU idle time. The idle thread TCB can be used with the vos_get profile() function to determine
what percentage of CPU time is spent in the idle thread and hence allow a calculation of the percentage of
CPU time spent in application threads.

4.1.8.6 CPU Usage Example

This example shows how to obtain the profiler count values for each thread in an application, and calculate the
relative amount of time each thread spent running.

/1 nunber of application threads plus idle thread
#define NUMBER OF THREADS (NUVBER_OF_APPLI| CATI ON_THREADS+1)

vos_tcb_t *tcbs[NUMBER_OF_THREADS] ;

ui nt 32 runni ng_ti me[NUMBER_OF_THREADS] ;
uint32 relative_time[NUMBER_OF_THREADS] ;
uint32 total _tine;

uint8 i;

/'l create application threads and save pointers to tcbs
for (i=1; i<NUMBER_ OF_THREADS; i ++) {
tcbs[i] = vos_create_thread(.);

}

/1 get pointer to idle thread tcb and save it
tcbs[0] = vos_get _idle_thread_tch();

/'l start profiling

vos_start_profiler();

/1 calculate relative running tinmes spent in threads

for (i=0; i<NUMBER OF THREADS; i ++) {
running_tinme[i] = vos_get_profile(tchs[i]);

}

Copyright © 2012 Future Technology Devices International Ltd. 217

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

for (i=0, total _tinme=0; i<NUMBER_OF_THREADS; i ++) ({
total _time += running_time[i];

}

for (i=0; i<NUMBER_OF_THREADS; i ++) {

relative_time[i] = (running_tinme[i] * 100) / total _tine;
}

4.1.9 Critical Sections

It is possible to define critical sections for when code must act atomically. This is done with the
following definitions:

#define VOS_ENTER CRI TI CAL_SECTI ON asm{ SETI ; } ;
#define VOS_EXI T_CRI TI CAL_SECTI ON asm{ CLRI ; }

Example

For example, the following code will make sure that the sequence is not interrupted:

/1 find end of linked list
VOS_ENTER_CRI TI CAL_SECTI ON
whi | e (pX->next)
{

pX = pX->next;
}
VOS_EXI T_CRI Tl CAL_SECTI ON

4.1.10 Device Manager

Devices are controlled by drivers and are managed by the device manager in the kernel. The device
manager is layered below the application and presents a standard interface to the devices in the
system.

Copyright © 2012 Future Technology Devices International Ltd. 218

Document Reference No.: FT_000289
Vinculum 11 User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Application
F Y
Device Manager
Devd Devl
Y

Kernel Services

The device manager controls access to the drivers for each device. Typically, an application opens a
device by calling the device manager function vos _dev_open() and obtains a handle that is used to
represent the device in all subsequent device accesses. The application sends requests to its
devices through the device manager using the functions vos dev read(), vos dev write() and

vos dev_ioctl(). The device manager uses the handle to route the requests to the appropriate
device.

Drivers are allocated a number by the application. The application specifies the number of drivers in
the call to vos init(). This number must be unique for each instance of a driver, it must start at zero
and each driver must be numbered contiguously. All allocated drivers must be initialised using

vos dev_init() before the scheduler is started or any interrupt is enabled with

vos enable interrupts().

The stages for using the device manager are:
e Driver Initialisation
e Registering memory for device storage
e Registering each driver
e Driver Operation
e Opening Drivers
¢ Sending Read/Write or IOCTL Operations to the Drivers

e Closing Drivers

Copyright © 2012 Future Technology Devices International Ltd. 219

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

4.1.10.1 Driver Initialisation

The device manager must be told how many devices are present in the system with the vos_init()
call before any devices are initialised by vos_dev_init().

Once when drivers are initialised is it possible to access a driver. Driver initialisation will normally be
handled by the driver rather than an application. Each driver should supply an initialisation function
for this purpose.

All devices must be initialised with the vos_dev_init() function before the scheduler is started with
vos_start_scheduler(). In the following structure function pointers for driver entry points must be
filled out by the driver before registering with vos_dev_init().

typedef struct _vos_driver_t {

PF_OPEN open; /1 dev_open()

PF_CLGOSE cl ose; /1 dev_close()

PF_I1 O read; /1 dev_read()

PF_ IO wite; [l dev_write()

PF_I OCTL i octl; /1 dev_ioctl()

PF_INT interrupt; /1 interrupt routine
uint8 fl ags; /1 mscellaneous fl ags

} vos_driver_t;

The open, close and interrupt function pointers are optional and if no open or close function is
required should be set to NULL. The read, write and ioctl function pointers are only required if that
function is to be available for calling. These should be set to NULL if the function is not supported.

The flags member is reserved for future use.

FTDI supplied drivers supply interrupt handlers when required and will manage all interrupt enabling
and disabling. It is not necessary to use interrupts for layered and non-hardware device drivers.

4.1.10.1.1 vos_dev_init()

Syntax

void vos_dev_init(uint8 dev_num vos_driver_t *driver_chb, void *context);
Description

Initialise a device driver and add an optional context pointer.

Parameters

dev_num
This parameter specifies the index of the device in the driver control block.

driver_cb
A completed driver control block must be passed in the driver_cb parameter. This is used by
the device manager for calling driver entry points and must be persistent storage (i.e. not a
local variable in a function).

cont ext
An optional value may be specified in the context parameter to allow a driver to
differentiate different instances or be configured with external data. The parameter is a
void pointer allowing any driver specific data to be passed.

Returns

The function does not return any value.

Comments

All drivers must be initialised with this call before the scheduler starts.

Example
#defi ne NUMBER _OF_DEVI CES 2
#define VOS_DEV_TEST1 0
#define VOS_DEV_TEST2 1

Copyright © 2012 Future Technology Devices International Ltd. 220

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

vos_driver_t cb_test;
test_context tctx1;
test _context tctx2;

void test_init()

{
cb_test.open = test_open;
cb_test.close = test_close;
cb_test.read = test_read;
cb_test.write = test_wite;
cb_test.ioctl = test_ioctl;
cb_test.interrupt = NULL;

/1 the sane driver control block can be used for multiple drivers
vos_dev_init(VOS_DEV_TEST1, &chb_test, &t ctxl);
vos_dev_init(VOS_DEV_TEST2, &chb_test, &tctx2);

}

voi d mai n(voi d)
{
vos_i nit (VOS_QUANTUM VOS_TI CK_I NTERVAL, NUMBER_OF_DEVI CES) ;

test_init();

start_schedul er();

}

4.1.10.1.2 vos_enable_interrupts() vos_disable_interrupts()

Syntax

voi d vos_enabl e_interrupts(uint32 mask);
voi d vos_di sabl e_i nterrupts(uint32 mask);

Description

Enable or disable hardware interrupts.

Parameters

mask
The interrupts to enable or disable are specified by the mask parameter.

Returns

The functions return no values.

Comments

Interrupts should only be enabled after all devices have been initialised with vos_dev_init(). An
interrupt handler must be present for each hardware interrupt enabled. The mask parameter may
have one of the following values. Values may be combined by bitwise or operation.

VOS_UART I NT_I EN
VOS_USB_0_DEV_I NT_I EN
VOS_USB_1_DEV_I NT_I EN
VOS_USB_0_HC_I NT_I EN
VOS_USB_1_HC_I NT_I EN
VOS_GPI O_I NT_I EN
VOS_SPI _MASTER | NT_I EN
VOS_SPI _0_SLAVE_I NT_I EN
VOS_SPI _1_SLAVE_I NT_I EN
VOS_PWM TOP_I NT_I EN
VOS_FI FO_245_| NT_I EN

Interrupts are not required for drivers which do not directly control hardware interfaces. Therefore,

Copyright © 2012 Future Technology Devices International Ltd. 221

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

interrupt enabling and disabling is not required for drivers which are layered on top of hardware
drivers. FTDI supplied hardware device drivers control and handle all aspects of interrupts. These
functions are documented only to allow advanced use of the FTDI supplied drivers where it may be
beneficial to suspend interrupt handling for a driver for a short period of time.

4.1.10.2 Driver Operation

When a driver is opened a handle is obtained:

e Drivers are opened for exclusive access

e The handle is valid until the driver is closed

e Once it is closed it may be reopened

Read, Write and IOCTL calls will return a driver specific status value:
e This is usually zero for success and non-zero for other outcomes

Hardware interrupt handling is taken care of in the FTDI supplied drivers therefore there are no
interrupt handlers require to be written. Interrupts cannot be triggered on layered drivers or drivers
which do not directly control hardware.

Example

First initialise the driver. This must be done in the main() function before the scheduler starts.

Open the driver to obtain a handle. This must be done after the scheduler starts if the driver
generates interrupts.

Setup the driver as required. This is normally accomplished with IOCTL calls.
Send read and write commands to the driver.
Close the driver when it is no longer required.

voi d thread3(void){
/* handl e to UART driver */
VOS_HANDLE hUart;
/* UART | OCTL request block */
uart _ioctl _cb uart_ioch;
/* string to display (include space for term nating NULL */
char hello[] = {"H ,"e ,"I","I","0","\r"};
unsi gned short |en;

/* find and open UART device */

hUart = vos_dev_open(VOS_DEV_UART) ;

/* set baud rate to 9600 baud */

uart _iocb.ioctl_code = VOS_| OCTL_UART_SET_BAUD_RATE;
uart _i ocbh. buf _i n. baud_rate = UART_BAUD_9600;
vos_dev_ioctl (hUart, &uart _i och);
vos_dev_write(hUart, (unsigned)hello, 6, & en);
vos_dev_cl ose(hUart);

}

Do not call any device manager operations until all devices have been initialised with vos_dev_init().
Doing so may result in undefined behaviour.

Avoid using the device manager operations until the scheduler is started running with

vos_start_scheduler().
4.1.10.2.1 vos_dev_open()

Syntax

VOS_HANDLE vos_dev_open(ui nt 8 dev_nunber);

Description

Open a device for subsequent access.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 222

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

dev_nunber
The device number allocated to the driver in the vos_dev_init() function call.

Returns

VOS_HANDLE a handle to the device which must be used for accessing the device.

Comments

When the device has been opened successfully, the caller has exclusive access to the device.

Example

This function returns a handle that must be used in subsequent device accesses.
The following code fragment shows how to open a device.

#defi ne VOS_DEV_UART 4
VOS_HANDLE hUart ;
hUart = vos_dev_open(VOS_DEV_UART);

4.1.10.2.2 vos_dev_close()

Syntax

voi d vos_dev_cl ose(VOS_HANDLE h);

Description

Close a device.

Parameters

h
A VOS_HANDLE obtained previously from a call to vos_dev_open.

Returns

There is no return value.

Comments

Example

The following code fragment shows how to close a device.

#defi ne VOS_DEV_UART 4
VOS_HANDLE hUart;
hUart = vos_dev_open(VOS_DEV_UART) ;

vos_dev_cl ose(hUart);

4.1.10.2.3 vos_dev_read()

Syntax
uint8 vos_dev_read(VOS_HANDLE h, uint8 *buf,uint1l6 numto_read, uint1l6 *numread);
Description

Read data from a device.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 223

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

A VOS_HANDLE obtained previously from a call to vos_dev_open.

buf
Contains a pointer to storage for the data to be read.

numto_read
Contains the maximum number of bytes to be read.

num r ead
A pointer to a location to store the actual number of bytes read.
Returns

0 on success, otherwise a driver specific error code.

Comments

The device manager routes this request to the read function of the device that is represented by the
handle.

4.1.10.2.4 vos_dev_write()

Syntax
uint8 vos_dev_write(VOS_HANDLE h, uint8 *buf,uintl6 numto_wite,uintl6 *numwitten);
Description

Writes data to a device.

Parameters

h
A VOS_HANDLE obtained previously from a call to vos_dev_open.

buf
Contains a pointer to the data to be written.

numto write
Contains the number of bytes to be written.

numwitten
A pointer to a location to store the actual number of bytes written.

Returns

0 on success, otherwise a driver specific error code.

Comments

The device manager routes this request to the write function of the device that is represented by
the handle.

4.1.10.2.5 vos_dev_ioctl()

Syntax
ui nt 8 vos_dev_i octl (VOS_HANDLE h, void *cb);
Description

Send a control request to a device.

Parameters

h
A VOS_HANDLE obtained previously from a call to vos_dev_open.

cb

Copyright © 2012 Future Technology Devices International Ltd. 224

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Contains a pointer to the control block for the request.

Returns

0 on success, otherwise a driver specific error code.

Comments

The device manager routes this request to the ioctl function of the device that is represented by the
handle. The format of the control block is device-specific.

4.1.11 Hardware Information and Control

The kernel provides several functions for obtaining information about the CPU and controlling the
behaviour of the CPU.

Default is 48MHz but can be changed by application if required
Allowable values of 48MHz, 24MHz or 12MHz

4.1.11.1 vos_set_clock frequency() and vos_get_clock frequency()

Syntax

voi d vos_set_cl ock_frequency(uint8 frequency);
uint8 vos_get_cl ock_frequency(void);

Description

Initialise the CPU clock frequency

Parameters

frequency
The new clock frequency for the CPU is specified by the frequency parameter in
vos_set_clock_frequency().

Returns

The vos_get_clock_frequency() function returns the current clock frequency of the CPU.

Comments

The only valid values for the frequency are:

VOS_48NMHZ_CLOCK_FREQUENCY
VOS_24NMHZ_CLOCK_FREQUENCY
VOS_12NMHZ_CLOCK_FREQUENCY

Note: If the specified clock frequency is invalid in vos_set_clock_frequency() then it will default to
48MHz.

4.1.11.2 vos_get_package_type()

Syntax
ui nt 8 vos_get _package_type(void);
Description

Determine the package type of the device.

Parameters

There are no parameters.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 225

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The vos_get_package_type() function returns the package type of the device.

Comments

The values returned by the function are:

VINCULUM | | _32_PIN
VI NCULUM | | _48_PI N
VINCULUM | | _64_PI N

4.1.11.3 vos_get_chip_revision()

Syntax
uint8 vos_get _chip_revision(void);
Description

Find the revision information for the device.

Parameters

There are no parameters.

Returns

The vos_get_chip_revision() function returns a single byte which includes the chip revision in the
high nibble and chip ID in the low nibble.

Comments

Currently the only valid value returned by this function is Ox11.
4.1.11.4 vos_power_down()

Syntax
ui nt 8 vos_power _down(ui nt 8 wakeMask) ;
Description

Power down the CPU into a low power sleep mode. Wait until an event occurs.

Parameters
wakeMask
Bit mask specifying event or events which will wake the CPU.
Returns

0 on success, otherwise 1 for an invalid mask value.

Comments

The valid values of the wakeMask are:

VOS_WAKE_ON_USB_0
VOS_WAKE_ON_USB_1
VOS_WAKE_ON_UART_RI
VOS_WAKE_ON_SPI _SLAVE_0
VOS_WAKE_ON_SPI _SLAVE 1

4.1.11.5 vos_halt_cpu()

Syntax

voi d vos_halt_cpu(void);

Copyright © 2012 Future Technology Devices International Ltd. 226

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description

Halts the CPU. The CPU will cease to process instructions if this function is called.

Parameters

There are no parameters.

Returns

The function does not return any value.

Comments

This function can be useful for debugging. Resetting the VNC2 will run the program from the start
again until reaching the vos_hal t _cpu() function.

4.1.11.6 vos_reset_vnc2()

Syntax
voi d vos_reset_vnc2(void);
Description
Resets all hardware in the VNC2 IC. Registers are set to default values, the CPU is reset and RAM
will be re-initialized.
Parameters

There are no parameters.

Returns

The function does not return any value.

Comments

This function is equivalent to power cycling the VNC2 or toggling the RESET# line. It can be useful
for recovering from a system crash or provides an opportunity to re-configure the VNC2 based on
some external input (e.g. the state of GPIO lines).

4.1.12 Watchdog Timer

The kernel provides two functions to allow access to the VNC2 watchdog timer.

The watchdog timer is a special timer that has the ability to reset the CPU in the event that an error
has locked up the application. An application can enable the watchdog timer with a call to
vos wdt enabl e().

Once enabled, it is the responsibility of the application to call vos_wdt cl ear () at regular intervals to
prevent the CPU from being reset unintentionally.

4.1.12.1 vos_wdt_enable()

Syntax

ui nt 8 vos_wdt _enabl e(ui nt8 bitPosition);

Description

Enables the watchdog timer with the specified value.

Parameters

bi t Position
Value specifying the watchdog timer bit to initialise.

Copyright © 2012 Future Technology Devices International Ltd. 227

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Returns

The function returns one of the following values:

VOS_WDT_STARTED
The watchdog was successfully started.

VOS_WDT_ALREADY_RUNNI NG
The watchdog has been started already with a prior call to vos_wdt _enabl e() .

VOS_WDT_PENDI NG
The scheduler is not yet running; the watchdog timer will be enabled with the specified
value when the scheduler is started with a call to vos_start _schedul er ().

VOS_WDT_UNSUPPORTED
The program loader requires upgrading to at least version 1.7 to use the watchdog timer.

Comments

The watchdog timer uses a 32-bit counter to determine the time before the watchdog expires. The
watchdog timer only allows a single bit of this counter to be initialised to determine the timer period.
Therefore, valid values for bitPosition are from O to 31. If a value outside this range is provided, a
value of 31 will be set.

The watchdog timer is clocked from the main system clock. At a system clock frequency of 48MHz, a
bi t Posi ti on value of 31 will give a watchdog period of nearly 45 seconds. If the system clock
frequency is reduced to 12MHz, the watchdog period is increased by a factor of 4 for a given

bi t Posi ti on value.

An application can call vos_wdt _enabl e() only once. Subsequent attempts to call vos_wdt _enabl e()
will not have any effect.

Calling vos_wdt _enabl e() before the scheduler is running will result in the watchdog being enabled
with the specified value when the scheduler is started; the watchdog timer will not expire unless the
scheduler is running.

4.1.12.2 vos_wdt_clear()

Syntax
voi d vos_wdt _cl ear(void);
Description

Clears the watchdog timer value.

Parameters

There are no parameters.

Returns

The function does not return any value.

Comments

If the watchdog timer has been enabled with a call to vos_wdt _enabl e() , then this function must be
called periodically by the application to prevent the watchdog timer from resetting the CPU. If the
watchdog timer expires, then the CPU will be re-initialised.

4.1.13 Kernel Services

In addition to the core kernel functions, there are kernel services that provide specialised
functionality. Kernel services can be used in drivers and applications. The available kernel services
are:

DMA service

Copyright © 2012 Future Technology Devices International Ltd. 228

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

This provides an interface for accessing and controlling the on-chip DMA engines. This is used
extensively by the VOS device drivers, but the memory-memory mode could be used in user
applications.

IOMux service

The IOMux service provides a simple mechanism for an application to route a specified signal to a
particular pin. The IOMux service also provides functions to configure 10 cell characteristics.

4.1.13.1 DMA Service

The DMA service provides access to VNC2 direct memory access (DMA) engines. There are 4 on-chip
DMAs which this kernel service manages. DMA engines are used extensively by device drivers and
are not likely to be used in user applications in modes other than memory-memory.

typedef struct _vos_dma_config_ t {
uni on {
uint16 io_addr;
ui nt 8 *nmem addr;

} src;
uni on {
uint16 io_addr;
ui nt 8 *nmem addr;
} dest;

ui nt 16 bufsi z;

ui nt 8 node;

uint8 fifosize;

uint8 flow control;

uint8 afull _trigger;
} vos_dma_config_t;

4.1.13.1.1 DMA Service Return Codes

Calls to the DMA kernel service may return one of the following status codes:

DMA_OK
The DMA request completed successfully.

DMA_| NVALI D_PARAMETER
An invalid parameter has been passed to the DMA function.

DMA_ACQUI RE_ERROR
Failed to acquire a DMA engine.

DMA_ENABLE_ERROR
Failed to enable the DMA engine.

DMA_CONFI GURE_ERROR
Failed to configure the DMA engine.

DMA_ERROR
Reserved.

DMA_FI FO_ERROR
Failed to retrieve data from the DMA FIFO buffer.

4.1.13.1.2 vos_dma_acquire()

Syntax
vos_dma_handl e_t vos_dma_acquire(void);
Description

Acquire a DMA engine for subsequent use.

Parameters

None.

Copyright © 2012 Future Technology Devices International Ltd. 229

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Returns

A handle to the DMA engine that has been acquired.

Comments

Since there are 4 DMA engines on-chip, they need to be shared between the various drivers and the
user application. Where possible, it is recommended that an acquired DMA engine be released by
calling vos dma release() when the operation is complete. vos_dma_acquire() will block until a DMA
engine becomes available to acquire.

4.1.13.1.3 vos_dma_release()

Syntax

void vos_dma_rel ease(vos_dma_handl e_t h);

Description

Release a DMA engine which was previously acquired with a call to vos _dma_acquire().

Parameters

h
A handle to a DMA engine.

Returns

No return code is provided.

Comments

Once a DMA engine has been released, it will be available for acquisition by another module by

calling vos_dma_acquire().
4.1.13.1.4 vos_dma_configure()

Syntax

uint8 vos_dma_configure(vos_dma_handl e_t h,vos_dma_config_t *cb);

Description

Configure a DMA engine which was previously acquired with a call to vos dma acquire().

Parameters

h
A handle to a DMA engine.

*cb
A pointer to a DMA configuration structure. This specifies the operation that the DMA is
intended to perform.

Returns

The return code is one of the DMA status codes.

Comments

A DMA engine must be configured before it can be used for an operation. Once an operation is
complete, the DMA engine can be re-configured for another operation by a subsequent call to this
function.

4.1.13.1.5 vos_dma_retained_configure()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 230

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

uint8 vos_dma_retai ned_configure(vos_dma_handle_t h, uint8 *mem addr, uintl1l6 bufsiz);

Description

Perform minimal reconfiguration of a DMA engine which was previously acquired with a call to
vos_dma_acquire() and then fully configured with a call to vos_dma_configure().
Parameters

h
A handle to a DMA engine.

*mem_addr
A pointer to a RAM data buffer.

bufsiz
The size of the RAM data buffer above.

Returns

The return code is one of the DMA status codes.

Comments

Once a DMA operation is complete, the DMA engine may be released with a call to vos dma release
() orin some cases an additional DMA operation may be desired.

Provided that the DMA is to be used in the same mode as it has previously been configured for with
a call to vos _dma_configure(), the DMA can be quickly re-configured with a new memory address and
transfer size using the vos_dma_retained_configure() function. This function is much faster than
performing a full configuration of the DMA using vos dma configure() and can provide performance
benefits.

However, the 4 DMA engines in VNC2 are a shared resource and the decision to not release a DMA
may have an impact on overall system performance.

4.1.13.1.6 vos_dma_enable()

Syntax

ui nt 8 vos_dma_enabl e(vos_dnma_handl e_t h);

Description

Start a DMA operation which was specified with a call to vos _dma_configure().

Parameters

h
A handle to a DMA engine.

Returns

The return code is one of the DMA status codes.

Comments

Once a DMA operation has completed, an interrupt is signalled to the CPU. An application can be
notified of completion by calling vos_dma_wait _on_complete() which will block until the specified DMA
engine has completed its processing.

4.1.13.1.7 vos_dma_disable()

Syntax

ui nt 8 vos_dma_enabl e(vos_dnma_handl e_t h);

Description

Copyright © 2012 Future Technology Devices International Ltd. 231

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Stop a running DMA operation which was started with vos _dma_ enable().

Parameters

h
A handle to a DMA engine.

Returns

The return code is one of the DMA status codes.

Comments

Terminating a running DMA operation by calling vos_dma_disable() does not free the DMA for
subsequent acquisition. To free the DMA engine, call vos_dma_release().

4.1.13.1.8 vos_dma_wait_on_complete()

Syntax

voi d vos_dma_wait_on_conpl ete(vos_dma_handl e_t h);
Description

Block thread execution until the specified DMA engine has completed its current operation.

Parameters

h
A handle to a DMA engine.

Returns

No return code is provided.

Comments

An application is notified of a DMA operation completing by calling this function. When the function
returns, the DMA can either be released by calling vos_dma_release() or re-configured for a

subsequent operation by calling vos_dma_ configure().

4.1.13.1.9 vos_dma_get_fifo_data_register()

Syntax

uint16 vos_dnma_get _fifo_data_register(vos_dma_handle_t h);
Description
Obtain an identifier for the FIFO data register of a DMA engine in FIFO mode.

Parameters
h
A handle to a DMA engine in FIFO mode.
Returns

The return value is the identifier of the FIFO data register for the DMA engine with handle h.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

The FIFO data register identifier is used with vos_dma_configure() as an element of the cb structure.

Copyright © 2012 Future Technology Devices International Ltd. 232

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

4.1.13.1.10 vos_dma_get_fifo_flow_ control()

Syntax
uint8 vos_dma_get fifo_flow control (vos_dma_handl e_t h);
Description

Obtain a flow control value for a DMA engine in FIFO mode.

Parameters

h
A handle to a DMA engine in FIFO mode.

Returns

The return value is the flow control value for the DMA engine with handle h.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

The FIFO flow control value is used with vos_dma_configure() as an element of the cb structure.

4.1.13.1.11 vos_dma_get_fifo_count()

Syntax
uint16 vos_dma_get _fifo_count(vos_dma_handl e_t h);
Description

Determine the number of bytes in the DMA engine's FIFO.

Parameters

h
A handle to a DMA engine in FIFO mode.

Returns

The return value is the number of bytes currently in the FIFO for the DMA engine with handle h.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

vos_dma_get_fifo_count() can be called to determine the number of bytes in the DMA engine's FIFO

before calling vos_dma_get_fifo_data().
4.1.13.1.12 vos_dma_get fifo_data()

Syntax
uint8 vos_dma_get fifo_data(vos_dma_handle_t h,uint8 *dat);
Description

Determine the number of bytes in the DMA engine's FIFO.

Parameters

h
A handle to a DMA engine in FIFO mode.

Copyright © 2012 Future Technology Devices International Ltd. 233

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

*dat
A pointer to a variable to receive the data byte from the DMA engine's FIFO.

Returns

The return code is one of the DMA status codes.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

vos _dma get fifo _count() can be called to determine the number of bytes in the DMA engine's FIFO
before calling vos_dma_get_fifo_data().

4.1.13.2 I0OMux Service

VNC2 features several peripherals. Due to the packages that the IC is provided in, it is not possible
to simultaneously route all of the signals for all of the on-chip peripherals to pins for connecting to
external electronics.

To allow any of the peripherals to be used in conjunction with external devices, VNC2 uses an IO
multiplexer (IOMux) to allow the user to route signals from the IC to the package pins for their
specific application. A default configuration is specified for each package, but a simple APl is supplied
to allow the user to route signals as desired.

Note that there are restrictions on which pins a signal can be routed to.

In addition to signal routing, the IOMux allows an application to control the characteristics of each 10
cell.

To prevent unintended reprogramming of the debug pin (pin 11) on VNC2, the pin is mapped to pin
OxC7 (199 decimal) in the IOMux Service. An attempt to route a signal to any other pin above the
pin count for the current package will result in an error code being returned
(IOMUX_INVALID_PIN_SELECTION).

4.1.13.2.1 IOMux Service Return Codes

All calls to the I0Mux kernel service will return one of the following status codes:

I OMUX_OK
The signal routing request completed successfully.

| OMUX_I NVALI D_SI GNAL
The requested signal is outwith the available range.

I OMUX_I NVALI D_PI N_SELECTI ON
The requested pin is outwith the available range.

| OMUX_UNABLE_TO_ROUTE_SI GNAL
The requested signal could not be routed to the requested pin.

I OMUX_I NVLAI D_I| OCELL_DRI VE_CURRENT
The requested 10 cell drive current is invalid.

| OMUX_| NVLAI D_I OCELL_TRI GGER
The requested 10 cell trigger value is invalid.

| OMUX_I NVLAI D_| OCELL_SLEW RATE
The requested 10 cell slew rate is invalid.

| OMUX_| NVLAI D_I OCELL_PULL
The requested 10 cell pull value is invalid.

I OMUX_ERROR
An error occurred.

4.1.13.2.2 vos_iomux_define_input() and vos_iomux_define_output()

Syntax

ui nt 8 vos_i onux_define_i nput (uint8 pin, uint8 signal);
uint8 vos_i onux_define_output(uint8 pin, uint8 signal);

Copyright © 2012 Future Technology Devices International Ltd. 234

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description

Route the specified input or output signal to the specified pin.

Parameters
pin
The pin number that the requested signal should be routed to.

si gnal
The requested signal.

Returns

An IOMux request will always return one of the IOMux status codes.

Comments

It is not possible to route every signal to every pin. Any given signal can be routed to every 4th 10
pin on a package. The return code indicates if the requested routing has been successful.

When re-routing a default output signal with a successful call to vos_i onmux_def i ne_out put (), the
signal will be present on both the default pin and the pin specified in the call. The output signal on
the default pin can be turned off with a call to vos_iomux_disable_output(), or will be overridden
with a call to vos_i onux_defi ne_i nput (), vos_i onux_defi ne_out put () or vos_iomux_define_bidi() if
the default pin is to be reused for a different signal.

4.1.13.2.3 vos_iomux_define_bidi()

Syntax
uint8 vos_i onux_define_input(uint8 pin, uint8 input_signal, uint8 output_signal);
Description

Route the specified input and output signals to the specified pin.

Parameters
pin
The pin number that the requested signal should be routed to.

i nput _si gnal
The requested input signal.

out put _si gnal
The requested output signal.

Returns

An IOMux request will always return one of the IOMux status codes.

Comments

This function is intended for use when routing pins for peripherals with bidirectional signals (FIFO,
GPIO and SPI Master). All other signals should be routed as either input or output using the
vos_iomux_define_input and vos_iomux_define_output functions.

Note that in the case of bidirectional GPI10O signals the mask must be changed to input or output as
required using the YOS _IOCTL_GPIO_SET_ MASK IOCTL call.

It is not possible to route every signal to every pin. Any given signal can be routed to every 4th 10
pin on a package. The return code indicates if the requested routing has been successful.

Copyright © 2012 Future Technology Devices International Ltd. 235

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

4.1.13.2.4 vos_iomux_disable_output()

Syntax
ui nt 8 vos_i onux_di sabl e_out put (ui nt8 pin);
Description

Disable signal output on the specified pin.

Parameters
pin
The pin number that signal output should be disabled on.

Returns

An I0OMux request will always return one of the IOMux status codes.

Comments

When routing an output signal, it is possible to route it to more than one pin on the VNC2 package.
If a pin is assigned an output signal by default and it is not reused, the signal will be present on
both the default pin and the pin the signal has intentionally been routed to.

This function is provided to allow the default pin to be disabled in the case where it is not reused for
a non-default signal.

Note that input signals can only be routed to one pin at a time. This function only applies to output
signals. If an input signal is present on the pin specified for a call to vos_i onux_di sabl e_out put (), it
is unaffected.

4.1.13.2.5 vos_iocell get config()

Syntax

uint8 vos_iocell _get_config(uint8 pin, uint8 *drive_current, uint8 *trigger, uint8 *slew_ rate,
Description

Retrieve the 10 cell configuration for the specified pin.

Parameters

pin
The pin number that the requested signal should be routed to.
drive_current
A pointer to the current drive strength setting. Valid options are
VOS_| OCELL_DRI VE_CURRENT_4MA, VOS_| OCELL_DRI VE_CURRENT_8MA,
VOS_| OCELL_DRI VE_CURRENT_12MA and VOS_| OCELL_DRI VE_CURRENT_16MA

trigger
A pointer to the current trigger setting. Valid options are VOS_| OCELL_TRI GGER_NORMAL and
VOS_| OCELL_TRI GGER_SCHM TT

slew rate
A pointer to the current slew rate setting. Valid options are VOS_| OCELL_SLEW RATE_FAST
and VOS_| OCELL_SLEW RATE_SLOW

pul |
A pointer to the current pull-up/pull-down setting. Valid options are VOS_I OCELL_PULL_NONE,
VOS_| OCELL_PULL_DOWN_75K, VOS_| OCELL_PULL_UP_75K and VOS_| OCELL_PULL_KEEPER 75K

Copyright © 2012 Future Technology Devices International Ltd. 236

ui

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Returns

An IOMux request will always return one of the 1IO0Mux status codes.

Comments
This function retrieves the current configuration of the 10 cell corresponding to the specified pin.

4.1.13.2.6 vos_iocell _set _config()

Syntax

uint8 vos_iocell _set_config(uint8 pin, uint8 drive_current, uint8 trigger, uint8 slew rate,
Description

Set the 10 cell configuration for the specified pin.

Parameters

pin

The pin number that the requested signal should be routed to.
drive_current

The drive strength to set. Valid options are VOS_| OCELL_DRI VE_CURRENT_4MA,

VOS_| OCELL_DRI VE_CURRENT_8MA, VOS_| OCELL_DRI VE_CURRENT_12MA and
VOS_| OCELL_DRI VE_CURRENT_16MA

trigger
The trigger value to set. Valid options are VOS_| OCELL_TRI GGER_NORMAL and
VOS_| OCELL_TRI GGER_SCHM TT

slew rate
The slew rate setting to set. Valid options are VOS_| OCELL_SLEW RATE_FAST and
VOS_| OCELL_SLEW RATE_SLOW

pul |
The pull-up/pull-down setting to set. Valid options are VOS_| OCELL_PULL_NONE,
VOS_| OCELL_PULL_DOWN_75K, VOS_| OCELL_PULL_UP_75K and VOS_| OCELL_PULL_KEEPER 75K
Returns

An IOMux request will always return one of the IOMux status codes.

Comments

This function configures the 10 cell corresponding to the specified pin as requested. If the specified
pin is not available or an invalid parameter has been passed with the request an appropriate 10Mux
status code is returned.

4.1.13.3 GPIO Service

The GPIO service provides simple access to VNC2's 40 on-chip GPIO pins. The pins are grouped in to
5 ports, each 1 byte wide.

The GPIO service provides functions to read and write to and from the GPI10O, as well as configurable
interrupts.

The GPIO service functions are available to call at any time after vos init() has been called, with the
exception of the interrupt functions which can only be used once the VOS scheduler has been
started with a call to vos start scheduler().

Copyright © 2012 Future Technology Devices International Ltd. 237

ui nt8

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

4.1.13.3.1 GPIO Service Return Codes

Calls to the GPIO kernel service may return one of the following status codes:

GPl O_OK
The requested function call completed successfully.

GPI O_I NVALI D_PI'N
The pin specified is outside the valid range.

GPI O_I NVALI D_PORT
The port specified is outside the valid range.

GPI O_I NVALI D_PARAMETER
An invalid parameter has been passed to the GPIO function.

GPI O_I NVALI D_I NTERRUPT
The interrupt specified is outside the valid range.

GPI O_I NVALI D_I NTERRUPT_TYPE
The interrupt type specified is outside the valid range.

GPI O_I NTERRUPT_NOT_ENABLED
The interrupt specified in the call to a wait function is not enabled.

GPI O_ERROR
An error occurred.

4.1.13.3.2 vos_gpio_set_pin_mode()

Syntax

ui nt 8 vos_gpi o_set _pin_mode(uint8 pinld, uint8 nmask);
Description
Define a GP1O pin as input (0) or output (1).

Parameters

pinld
The GPIO pin identifier. Valid values are in the range GPIO_A 0 to GPI O _E_7.

mask
The direction that the GP10O should operate in - input (0) or output (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

All GPIO pins default to input. The IOMux configuration for the physical IC pin must match the
direction specified.

4.1.13.3.3 vos_gpio_set_port_mode()

Syntax

uint8 vos_gpi o_set_port_node(uint8 portld, uint8 mask);
Description
Define the pins of a GPI1O port as input (0) or output (1).

Parameters

portld
The GPIO port identifier. Valid values are GPI O_PORT_A, GPI O_PORT_B, GPI O_PORT_C,

Copyright © 2012 Future Technology Devices International Ltd. 238

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

GPI O_PORT_D or GPI O_PORT_E.
mask
A bit mask of the direction that each pin on the port should operate in - input (0) or output
.
Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

All GPIO pins default to input. The IOMux configuration for the physical IC pin must match the
direction specified.

4.1.13.3.4 vos_gpio_set_all mode()

Syntax

uint8 vos_gpi o_set_all _mpde(vos_gpio_t *nmasks);
Description
Define all GP1O pins as input (0) or output (1).

Parameters
masks
A pointer to a vos_gpi o_t structure specifying the bit mask of the direction that each GPI1O
pin on the device should operate in - input (0) or output (1).
Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

All GPIO pins default to input. The IOMux configuration for the physical IC pin must match the
direction specified.

4.1.13.3.5 vos_gpio_read_pin()

Syntax

uint8 vos_gpio_read_pin(uint8 pinld, uint8 *val);
Description
Reads the value of the specified GPIO pin.

Parameters

pinld
The GPIO pin identifier. Valid values are in the range GPIO_ A 0 to GPIO E_7.

val
A pointer to the value read from the GPIO pin - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to read a valid value from a GP10O pin, the pin direction must have been specified as input
with a call to vos_gpio_set_pin_mode(), vos_gpio_set_port _mode() or vos_gpio_set_all mode().

Copyright © 2012 Future Technology Devices International Ltd. 239

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Also, the 1I0Mux routing must be configured as input or bi-directional for the physical IC pin.

If a pin is specified as output then a O will be returned for that pin.

4.1.13.3.6 vos_gpio_read_port()

Syntax

uint8 vos_gpi o_read_port(uint8 portld, uint8 *val);
Description
Reads the value of the specified GPIO port.

Parameters

portld
The GPIO port identifier. Valid values are GPI O_PORT_A, GPI O_PORT_B, GPI O_PORT_C,
GPlI O_PORT_D or GPI O_PORT_E.

val
A pointer to the value read from the GPIO port. The value read is a bit-mask of each GPIO
pin of the port - low (0) or high (1).
Returns

A GPIO request will always return one of the GPI1O Service Return Codes.

Comments

In order to read a valid value from a GP1O port, the port pins direction must have been specified as
input with a call to vos gpio set pin mode(), vos gpio set port mode() or vos gpio set all mode
0. Also, the IOMux routing must be configured as input or bi-directional for the physical IC pins.

If a pin is specified as output then a O will be returned for that pin.

4.1.13.3.7 vos_gpio_read_allQ)

Syntax
uint8 vos_gpio_read_all (vos_gpio_t *vals);
Description

Reads the value of all GPIO ports.

Parameters

val s
A pointer to the values read from each of the GPIO ports. The value read for each port is a
bit-mask of each GPIO pin of the port - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to read a valid value from a GPIO port, the port pins direction must have been specified as
input with a call to vos gpio set pin mode(), vos gpio set port mode() or vos gpio set all mode
0. Also, the IOMux routing must be configured as input or bi-directional for the physical IC pins.

If a pin is specified as output then a O will be returned for that pin.

4.1.13.3.8 vos_gpio_write_pin()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 240

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

uint8 vos_gpio_ write_pin(uint8 pinld, uint8 val);
Description

Writes the value to the specified GPIO pin.

Parameters

pinld
The GPIO pin identifier. Valid values are in the range GPIO A 0 to GPIO E_7.

val
The value to write to the GPIO pin - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to write a valid value to a GPIO pin, the pin direction must have been specified as output
with a call to vos gpio set pin mode(), vos gpio set port mode() or vos gpio set all mode().
Also, the 1OMux routing must be configured as output or bi-directional for the physical IC pins.

If a pin is specified as input then the value requested will not be written to that pin.

4.1.13.3.9 vos_gpio_write_port()

Syntax
uint8 vos_gpio_wite_port(uint8 portld, uint8 val);
Description

Writes the value to the specified GPIO port.

Parameters

portld
The GPIO port identifier. Valid values are GPI O_PORT_A, GPI O_PORT_B, GPI O_PORT_C,
GPlI O_PORT_D or GPI O_PORT_E.

val
The value to write to the GPIO port. The value read is a bit-mask of each GPIO pin of the
port - low (0) or high (1).
Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to write a valid value to a GPIO port, the port pins direction must have been specified as
output with a call to vos gpio_set pin_mode(), vos gpio_set port mode() or

vos gpio_set all mode(). Also, the IOMux routing must be configured as output or bi-directional for
the physical IC pins.

If a pin is specified as input then the value requested will not be written to that pin.

4.1.13.3.10 vos_gpio_write_all()

Syntax
uint8 vos_gpio_wite_all(vos_gpio_t *vals);
Description

Writes the values to all GPIO ports.

Copyright © 2012 Future Technology Devices International Ltd. 241

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Parameters

val s
A pointer to the values to write to each of the GPIO ports. The value written to each port is
a bit-mask of each GPIO pin of the port - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to write a valid value to a GPIO port, the port pins direction must have been specified as
output with a call to vos _gpio_set pin_mode(), vos gpio_set port mode() or

vos gpio_set all mode(). Also, the IOMux routing must be configured as output or bi-directional for
the physical IC pins.

If a pin is specified as input then the value requested will not be written to that pin.

4.1.13.3.11 vos_gpio_enable_int()

Syntax

uint8 vos_gpi o_enable_int(uint8 intNum uint8 intType, uint8 pinld);
Description

Enables a GPIO interrupt with the specified features.

Parameters

i nt Num
The GPIO interrupt to use. Valid values are GPI O_I NT_0, GPI O_INT_1, GPI O_I NT_2,
GPI O I NT_3 or GPI O_| NT_PORT_A.

i nt Type
The type of interrupt to fire. Valid values are GPI O_| NT_ON_POS_EDGE, GPI O_| NT_ON_NEG_EDGE,
GPI O_I NT_ON_ANY_EDGE, GPI O_| NT_ON_LOW STATE or GPI O_| NT_ON_HI GH_STATE. This value is
ignored if intNum is GPI O_| NT_PORT_A as this will fire for any state change of a GPIO port A
pin.

pinld
The GPIO pin identifier to associate the interrupt with. Valid values are in the range
GPI O_A 0 to GPI O_E_7. This value is ignored if intNum is GPI O_I NT_PORT_A as this is
associated with all of the pins on GPIO port A.

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

GPIO interrupts must be enabled in order to wait on interrupts with vos gpio_wait on_int(),
VoS gpio _wait on_any int() or vos gpio _wait on_all ints().

4.1.13.3.12 vos_gpio_disable_int()

Syntax

uint8 vos_gpi o_disable_int(uint8 intNum;
Description

Disables a GPIO interrupt previously enabled with a call to vos _gpio_enable int.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 242

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

i nt Num
The GPIO interrupt to disable. Valid values are GPI O_I NT_0, GPI O_I NT_1, GPI O_I NT_2,
GPI O_I NT_3 or GPI O_I NT_PORT_A.

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

4.1.13.3.13 vos_gpio_wait_on_int()

Syntax
uint8 vos_gpio_wait_on_int(uint8 intNum;
Description

Waits for a GPIO interrupt previously enabled with a call to vos _gpio _enable int to fire.

Parameters
i nt Num
The GPIO interrupt to wait for. Valid values are GPI O_I NT_0, GPI O_I NT_1, GPI O_I NT_2,
GPI O_I NT_3 or GPI O_I NT_PORT_A.
Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

Calls to this function will block the calling thread until the specified GPIO interrupt has fired. GPIO
interrupts are enabled with a call to vos gpio enable int.

4.1.13.3.14 vos_gpio_wait_on_any_int()

Syntax
uint8 vos_gpio_wait_on_any_int(uint8 *intNum;
Description

Waits for any active GPIO interrupt previously enabled with a call to vos _gpio _enable int to fire.

Parameters
i nt Num
A pointer to the GPIO interrupt that fired. Valid values are GPI O_I NT_0, GPI O_I NT_1,
GPI O_INT_2, GPI O_I NT_3 or GPI O_| NT_PORT_A.
Returns

A GPIO request will always return one of the GPI10O Service Return Codes.

Comments

Calls to this function will block the calling thread until one of the enabled GPIO interrupts has fired.
GPIO interrupts are enabled with a call to vos _gpio_enable int.

4.1.13.3.15 vos_gpio_wait_on_all ints()

Syntax

uint8 vos_gpio_wait_on_all _ints(void);

Copyright © 2012 Future Technology Devices International Ltd. 243

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Description

Waits for all active GPIO interrupt previously enabled with a call to vos_gpio_enable_int to fire.

Parameters

There are no parameters

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

Calls to this function will block the calling thread until all of the enabled GPIO interrupts have fired.
GPIO interrupts are enabled with a call to vos_gpio_enable_int.

4.1.13.4 Memory Management

The memory management service allows direct access to the heap and optimised memory copy and
memory write routines. The vos malloc, vos free, vos memcpy and vos memset functions are the
called by equivalent functions in the stdlib and string libraries.

4.1.13.4.1 vos_malloc

Syntax
void *vos_malloc (size_t size);
Description

Performs a malloc operation which allocates space on the heap. This is called by the library function
malloc in stdlib library.

Parameters

si ze
Size of the memory block, in bytes.

Return Value

A pointer to the memory block allocated by the function. If the function failed to allocate the
requested block of memory, a NULL pointer is returned.

4.1.13.4.2 vos_free

Syntax
voi d vos_free(void *ptr);
Description

Performs a free operation which returns previously allocated space to the heap. This is called by the
library function free in stdlib library.

Parameters

ptr
Pointer to a memory block previously allocated with malloc or calloc to be deallocated.

Return Value

The free function returns no value.

Copyright © 2012 Future Technology Devices International Ltd. 244

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

4.1.13.4.3 vos_heap_size

Syntax

unsi gned short vos_stack_usage(vos_tcbh_t *tcbh);
Description

Used to find the size of the heap allocated to the application.

Returns

Total number of bytes in the applications heap space. The vos_heap_space function can be used to
find the remaining space in the heap.

Comments

The heap is the memory remaining after global and static variables are assigned. This can be used
for thread and driver memory as well as by malloc (and vos _malloc) requests in the application.

While the main() function is running, some heap space is used for the stack of that function. After
vos start scheduler() is called, this space is returned to the heap.

4.1.13.4.4 vos_heap_space

Syntax
voi d vos_heap_space(size_t *hfree, size_t *hmax)
Description

Used to find the available size of the heap and the maximum block size which may be allocated.

Returns

hfree
The total number of bytes available to the heap. This may be non-contiguous and it may not
be able to allocate all of this space in a single malloc request.

hmax
The size of the largest block of heap which may be allocated in a single malloc request.

4.1.13.4.5 vos_memcpy

Syntax

void * vos_nencpy (void * destination, const void * source, size_t num);

Description

This function performs an optimised kernel level copy of a block of memory. It implements the
memcpy function from the string library.

Parameters

destination
Pointer to the destination array where the content is to be copied, type-cast to a pointer of
type void*.

source
Pointer to the source of data to be copied, type-cast to a pointer of type void*.

num
Number of bytes to copy.

Copyright © 2012 Future Technology Devices International Ltd. 245

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Return Value
Destination pointer where the source content is copied to is returned.

4.1.13.4.6 vos_memset

Syntax

void * menset (void * ptr, int value, size_t num);

Description

This function performs an optimised kernel level block memory fill. It implements the memset function
from the string library.

Parameters

ptr
Pointer to the block of memory to fill.

val ue
Value to be set. The value is passed as an int, but the function fills the block of memory
using the unsigned char conversion of this value.

num
Number of bytes to be set to the value.

Return Value

Pointer where block of memory is filled with given value is returned.

4.2 FTDI Drivers

To facilitate communication between user applications and the hardware peripherals available on the
VNC2 IC, FTDI provides device drivers which work with VOS. In addition to the hardware device
drivers, FTDI provides function drivers which build upon the basic hardware device driver functionality
for a specific purpose.

For example, drivers for standard USB device classes may be created which build upon the USB host
hardware driver to implement a BOMS class, CDC, printer class or even a specific vendor class device
driver.

4.2.1 Hardware Device Drivers

The VNC2 IC contains several peripheral devices which the CPU has access to. These hardware
peripherals are:

e UART

e SPI Slave (x2)

e SPI Master

e Parallel FIFO

e Timers (x3)

e Pulse width modulators (x3)

e GPIOs (x40, spread over 5 ports)
e USB Host (x2)

e USB Slave (x2)

In order for applications to communicate with these peripherals, device drivers are required.
Applications will communicate with the device drivers via a device manager.

4.2.1.1 UART, SPI and FIFO Drivers

The UART, SPI and FIFO drivers share a common calling interface. This consists of common I0CTL
codes and structures providing a transport neutral method of using these interfaces. IOCTL options

Copyright © 2012 Future Technology Devices International Ltd. 246

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxXx

specifically targeted at one interface may be sent to the other interfaces without worrying about it
getting misinterpreted by the other interface.

The read and write interfaces are identical, allowing data to be read and written in the same way.
Return codes are standardised with identical success codes and common error codes.

There are only sufficient DMA resources available to have DMA enabled for 3 from the 5 interfaces
(UART, 2 SPI Slaves, 1 SPI Master and FIFO interface) to be open at the same time. Therefore DMA is
not enabled by default on any of these interfaces.

It is recommended that the UART, SPI and FIFO interfaces are used with DMA enabled.
The UART interface cannot be used above 115200 baud without DMA being enabled.

The SPI Slave and SPI Master can operate at frequencies up to one quarter of the CPU clock
frequency. The SPI Master can go as low as 1/256th of the CPU clock frequency.

When using the SPI Master the chip select signals SS_0 and SS_1 must be set using the IOCTL
operation. They do not toggle automatically when data is read or written.

Read operations from the SPI Master MUST be preceded by a write operation of exactly the same
size as the read operation. The way the SPI Master driver works is that data can only be clocked into
the chip only when a write occurs. If not enough data is waiting to be read then the driver will block.
Multiple write operations may be performed, up to the driver's buffer size, before the data need be
read from the driver. Likewise multiple read operations may be performed until all data in the read
buffer is processed.

Driver Hierarchy
UART Driver hierarchy:

UART Driver

VOS Kernel

UART Hardware

The uart_init() function must be called to initialise the driver before the kernel scheduler is started

with vos_start_scheduler().

SP1 Slave Driver hierarchy:

SPI1 Slave Driver

VOS Kernel

SPI Slave Hardware

The spislave_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start scheduler().

SPI1 Master Driver hierarchy:

SPI1 Master Driver

VOS Kernel

SP| Master Hardware

The spimaster_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start scheduler().

FIFO Driver hierarchy:

FIFO Driver

VOS Kernel

FIFO Hardware

The fifo_init() function must be called to initialise the driver before the kernel scheduler is started

with vos_start_scheduler().

Copyright © 2012 Future Technology Devices International Ltd. 247

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Library Files
UART.a
SPISlave.a
SPIMaster.a
FIFO.a

Header Files
UART.h
SPISlave.h
SPIMaster.h
FIFO.h

4.2.1.1.1 Common Read and Write Operations

Syntax

vos_dev_read(VOS_HANDLE h, unsigned char *buffer,
unsi gned short |en, unsigned short *read);

vos_dev_write(VOS_HANDLE h, unsigned char *buffer,
unsi gned short |en, unsigned short *witten);

Description

The UART, SPI and FIFO interfaces present the same read and write interfaces. All read and write
operations block until the required number of bytes have been sent or received.

Parameters

h
A handle to the device used for input or output. This device must be initialised and opened.

buf fer
Pointer to a buffer from which to send data to the device (read) or to receive data from the
device (write).

I en
Number of bytes to transfer to or from the buffer. The operation will block until the number
of bytes are transferred.

read

written
Optional parameter to inform the calling function how many bytes were read from or written
to the device. This may be less than the number of bytes requested in the len parameter if
there is an error.

This parameter may be NULL, in which case the value is not updated.

Returns

An interface specific return code. See the return code section of the driver. All success error
messages are the same value.

Example
/'l test buffer
char buf[64];

unsi gned short numread,;
unsi gned short numwitten;

while (1)

{
uart_ioch.ioctl_code = VOS_| OCTL_COMMON_GET_RX_QUEUE_STATUS;
vos_dev_ioctl (hTest, &uart_ioch);
numwitten = uart_ioch. get.queue_stat;

Copyright © 2012 Future Technology Devices International Ltd. 248

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

/1 limt to 64 bytes per transaction
if (numwitten > 64)
numwitten = 64;

if (numwitten)

{
if (vos_dev_read(hln, buf, numwitten, &iumread) == UART_OK)
{
if (num_read)
{
if (vos_dev_write(hQut, buf, numread, &umwitten) == UART_OK)
{
/'l success
}
}
}
}
} while (1);

4.2.1.1.2 Common IOCTL Calls
Calls to the IOCTL functions for the UART, SPI and FIFO interfaces take the form:

typedef struct _common_ioctl_cb_t {
unsi gned char ioctl_code;
uni on {
unsi gned | ong uart_baud_rate;
unsi gned | ong spi _master_sck_freq;
unsi gned char param
void * data;

} set;
uni on {
unsi gned | ong spi _master_sck_fregq;
unsi gned short queue_stat;
unsi gned char param
void * data;
} get;

} common_ioctl_cb_t;

The common codes supported by all interfaces are:

VOS 10CTL COMMON RESET Reset the interface

VOS I0OCTL_COMMON_GET_RX_QUEUE_STATUS Get the number of bytes in the receive buffer
VOS I0CTL COMMON GET TX QUEUE STATUS Get the number of bytes in the transmit buffer
VOS I0CTL_COMMON_ENABLE_DMA Acquire DMA channels and disable interrupts
VOS I0CTL COMMON DISABLE DMA Release DMA channels and enable interrupts

4.2.1.1.2.1 VOS_IOCTL_COMMON_RESET
Description
This IOCTL will perform a hardware reset of the interface.

Parameters

There are no other parameters to set.

Returns

There is no data returned.

The vos dev_ioctl() call will always return a code indicating successful transaction for the UART, SPI

Copyright © 2012 Future Technology Devices International Ltd. 249

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

and FIFO interfaces.

Example

conmon_i octl _cb_t spi_iocb;
spi _ioctl.ioctl_code = VOS_| OCTL_COMVON_RESET;
vos_dev_ioctl (hSPlI, &spi _ioctl);

4.2.1.1.2.2VOS_I0CTL_COMMON_GET_RX_ QUEUE_STATUS
Description

Returns the number of bytes in the receive queue.

Parameters

There are no parameters to set.

Returns

The number of bytes in the receive buffer is returned in the queue_stat member of the get section of
the IOCTL structure.

The vos_dev_ioctl() call will always return a code indicating successful transaction for the UART, SPI
and FIFO interfaces.

Example

common_ioctl _cb_t uart_iocb; // UART iocb for getting bytes avail able.
unsi gned short dataAvail = O0; /1 How much data is available to be read?

uart_iocb.ioctl_code = VOS_| OCTL_COMMON_GET_RX_QUEUE_STATUS;
vos_dev_ioctl (hMonitor, &uart_iocbh);

dat aAvail = uart_ioch.get.queue_stat; // How nuch data to read?

4.2.1.1.2.3VOS_IOCTL_COMMON_GET_TX_ QUEUE_STATUS

Description

Returns the number of bytes in the transmit queue.

Parameters

There are no parameters to set.

Returns

The number of bytes in the transmit buffer is returned in the queue_stat member of the get section
of the IOCTL structure.

The vos_dev_ioctl() call will always return a code indicating successful transaction for the UART, SPI
and FIFO interfaces.

Example

comon_ioctl _cb_t uart_iocb; // UART iocb for getting bytes waiting to be sent.
unsi gned short dataAvail = O0; /1 How much data is waiting in the queue?

uart_iocb.ioctl_code = VOS_| OCTL_COMMON_GET_TX_ QUEUE_STATUS;
vos_dev_ioctl (hMonitor, &uart_ioch);

dat aAvail = uart_ioch.get.queue_stat; // How nuch data is there?

Copyright © 2012 Future Technology Devices International Ltd. 250

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

4.2.1.1.2.4VOS_IOCTL_COMMON_ENABLE_DMA

Description

This IOCTL will switch the interface from interrupt mode to DMA mode. The DMA has two different
modes of operation: DMA_ACQUIRE_AS_REQUIRED and DMA_ACQUIRE_AND_RETAIN.

DMA_ACQUIRE_AS_REQUIRED will attain an available DMA and will hold onto this only for the period
it takes to complete the read or write transaction. After this period the DMA will be released and
made freely available to any of the other peripherals.

DMA_ACQUIRE_AND_RETAIN will attain an available DMA and will hold onto this indefinitely. This will
mean that no other peripherals will have access to this DMA until a further

DMA_ACQUIRE_AS REQUIRED IOCTL is called on the driver. The benefit of this approach is that
there will be no DMA setup overhead before each transaction, helping to boost data throughput.
Parameters

Set the required DMA mode: DMA_ACQUIRE_AS_REQUIRED or DMA_ACQUIRE_AND_RETAIN, with the
set member of the IOCTL structure.

Returns

The function returns no data.

The vos dev_ioctl() call will return a code indicating successful transaction if there are sufficient DMA
resources otherwise it will indicate that DMA was not enabled.

Example

common_ioctl _cb_t uart_iocb;

uart_ioch.ioctl_code = VOS_| OCTL_COMVON_ENABLE_DMA;
uart _i och. set = DMA_ACQUI RE_AS_REQUI RED;
vos_dev_i octl (hMonitor, &art _i och);

4.2.1.1.2.5VOS_I10CTL_COMMON_DISABLE_DMA

Description

This IOCTL will switch the interface from DMA mode to interrupt mode.

Parameters

There are no parameters to set.

Returns
The function returns no data.

The vos_dev_ioctl() call will return a code indicating successful transaction if the DMA resources were
allocated otherwise it will indicate an invalid parameter.

Example

comon_ioctl _cb_t uart_iocb;
uart _i ocb.ioctl_code = VOS_| OCTL_COWMMON_DI SABLE_DMA,;
vos_dev_ioctl (hMonitor, &art _i och);

4.2.1.1.3 UART Driver
4.2.1.1.3.1 UART Return Codes

All calls to the UART driver will return one of the following status codes.

UART_OK
The command completed successfully.

UART_I NVALI D_PARAMETER
There was an error or problem with a parameter sent to the driver.

Copyright © 2012 Future Technology Devices International Ltd. 251

Document Reference No.: FT_000289
Vinculum Il User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

FTDI

Chip

UART_DMA_NOT_ENABLED

A DMA operation was requested when DMA was not enabled.

UART_ERROR
An unspecified error occurred.

4.2.1.1.3.2 UART IOCTL Calis

The following IOCTL request codes are supported by the UART driver.

VOS 10CTL UART GET MODEM STATUS
VOS_IOCTL_UART_GET_LINE_STATUS
VOS IOCTL UART SET BAUD RATE
VOS_IOCTL_UART_SET_FLOW_CONTROL
VOS IOCTL UART SET DATA BITS
VOS_IOCTL_UART_SET_STOP_BITS

VOS IOCTL UART SET PARITY
VOS_IOCTL_UART_SET_RTS

VOS IOCTL UART CLEAR RTS
VOS_IOCTL_UART_SET_DTR

VOS IOCTL UART CLEAR DTR
VOS_IOCTL_UART_SET_BREAK_ON

VOS IOCTL UART SET BREAK OFF
VOS_IOCTL_UART_SET_XON_CHAR
VOS IOCTL UART SET XOFF CHAR

Get the modem status bits
Get the line status

Set the baud rate

Set flow control

Set the number of data bits
Set the number of stop bits
Set the parity

Assert the RTS line
Deassert the RTS line
Assert the DTR line
Deassert the DTR line

Set the line break condition
Clear the line break condition
Set the XON character

Set the XOFF character

VOS I0CTL_UART WAIT_ON_MODEM_STATUS Wait on a transmit status interrupt
INT

VOS I0CTL UART WAIT ON LINE STATUS INTWait on a line status interrupt

Description
Get the modem status. This is the CTS, DSR, RI lines and the DCD function.

Parameters

There are no other parameters to set.

Returns

A bit map of the modem signals in the param member of get is returned:

UART_MODEM_STATUS_CTS
UART_MODEM STATUS_DSR
UART_MODEM STATUS_DCD
UART_MODEM STATUS_RI

Example

//wait for either CTS or DSR to be asserted

do

{
uart _ioch.ioctl_code = VOS_| OCTL_UART_GET_MODEM STATUS;
uart _i och. get.param = 0;
vos_dev_i octl (hMonitor, &art _i ocbh);

uart _i ocbh. get. param &= (UART_MODEM STATUS_CTS | UART_MODEM STATUS_DSR) ;
if (uart_ioch.get.param!= (UART_MODEM STATUS CTS | UART_MODEM STATUS_DSR))

Copyright © 2012 Future Technology Devices International Ltd. 252

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

{

}
} while (1)

br eak;

Description

Get the last line status value. The line status value will be reset after the application retrieves this
value.

Parameters

There are no other parameters to set.

Returns

The line status is returned as a bit map in the param member of get:

UART_LI NE_STATUS_OE
UART_LI NE_STATUS_PE
UART_LI NE_STATUS_FE
UART_LI NE_STATUS_B

Example

uart _i ocb.ioctl_code = VOS_| OCTL_UART_GET_LI NE_STATUS;
uart _i ocb. get.param = O;
vos_dev_i octl (hMonitor, &art _i och);

if (uart_iocb.get.param & UART_LI NE_STATUS_PE))
{
/1 parity error detected
br eak;

}
} while (1)

Description

Set the baud rate. For non-standard baud rates, the UART driver will calculate the closest possible
baud rate.

The baud rate calculation is based on the CPU clock frequency. If the CPU clock frequency is changed
after the baud rate has been set then it must be set again to obtain the correct baud rate.

Parameters

Set the desired baud rate in the baud_rate member of set. No other fields need to be filled out.
Predefined values are available for:

UART_BAUD_300
UART_BAUD_600
UART_BAUD_1200
UART_BAUD_2400
UART_BAUD_4800
UART_BAUD_9600
UART_BAUD_19200
UART_BAUD_38400
UART_BAUD_ 57600
UART_BAUD_ 115200
UART_BAUD_ 256000
UART_BAUD_ 500000
UART_BAUD_1000000
UART_BAUD_1500000
UART_BAUD_2000000
UART_BAUD_3000000

Returns

Copyright © 2012 Future Technology Devices International Ltd. 253

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

If the baud rate cannot be set within an accuracy of +/-3% then UART_ERROR is returned.

Example

/* UART setup */

/* set baud rate to 9600 baud */

uart _i ocb.ioctl_code = VOS_| OCTL_UART_SET_BAUD_RATE;
uart _i och. set.uart_baud_rate = UART_BAUD 9600;
vos_dev_i octl (hMonitor, &art _i och);

Description

Set the flow control scheme.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out.
Available flow control methods are:

UART_FLOW NONE
UART_FLOW RTS_CTS
UART_FLOW DTR_DSR
UART_FLOW XON_XOFF

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.
Example

/* set flow control */
uart _ioch.ioctl_code = VOS_| OCTL_UART_SET_FLOW CONTROL;
uart _i ocb. set. param = UART_FLOW RTS_CTS;
vos_dev_i octl (hMonitor, &art _i och);
Description

Set the number of data bits.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out
This can be set to:

UART_DATA BI TS_7
UART_DATA BI TS_8

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.
Example

/* set data bits */
uart _i ocb.ioctl_code = VOS_| OCTL_UART_SET_DATA BI TS;
uart _i ocb. set. param = UART_DATA_BI TS_8;
vos_dev_i octl (hMonitor, &art _ioch);
Description

Set the number of stop bits.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out
This can be set to:

UART_STOP_BI TS_1
UART_STOP_BI TS_2

Copyright © 2012 Future Technology Devices International Ltd. 254

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.
Example

/* set stop bits */

uart _ioch.ioctl_code = VOS_|I OCTL_UART_SET_STOP_BI TS;
uart _i ocb. set. param = UART_STOP_BI TS_1;

vos_dev_i octl (hMonitor, &art _i och);

Description

Set the parity.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out.
This can be set to:

UART_PARI TY_NONE
UART_PARI TY_ODD
UART_PARI TY_EVEN
UART_PARI TY_MARK
UART_PARI TY_SPACE

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.
Example

/* set parity */

uart _ioch.ioctl_code = VOS_| OCTL_UART_SET_PARI TY;
uart _i och. set. param = UART_PARI TY_NONE;

vos_dev_i octl (hMonitor, &art _i och);

Description

Enables the RTS line to be controlled by the flow control if CTS/RTS is selected for flow control.

Parameters

No fields in the ioctl structure need to be filled out.

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Unconditionally deassert the RTS line.

Parameters

No fields in the ioctl structure need to be filled out.

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.
Description

Enables the DTR line to be controlled by the flow control if DTR/DSR is selected for flow control.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 255

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

No fields in the ioctl structure need to be filled out.

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Unconditionally deassert the DTR line.

Parameters

No fields in the ioctl structure need to be filled out.

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Set line break condition

Parameters

No fields in the ioctl structure need to be filled out.

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Clear line break condition

Parameters

No fields in the ioctl structure need to be filled out.

Returns
If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description
Set the XON character to be used for UART_FLOW_XON_XOFF.

Parameters

Set the desired character in the param member of set. No other fields need to be filled out.
Returns

The call does not return any value.

Description

Set the Xoff character to be used with UART_FLOW_XON_XOFF

Parameters

Set the desired character in the param member of set. No other fields need to be filled out

Returns

Copyright © 2012 Future Technology Devices International Ltd. 256

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The call does not return any value.

Description

Wait on a modem status interrupt (CTS, DSR, RI, DCD, BUSY). Note that a call with this IOCTL code
will not return until a change in the modem status occurs.

Parameters

No other fields in the ioctl structure need to be filled out.

Returns

A bit map of the modem signals in the param member of get is returned:

UART_MODEM STATUS_CTS
UART_MODEM_STATUS_DSR
UART_MODEM_STATUS_DCD
UART_MODEM STATUS_RI

Description

Wait on a line status interrupt (OE, PE, SE, Bl) Note that a call with this IOCTL code will not return
until a change in the line status occurs.
Parameters

No other fields in the ioctl structure need to be filled out.

Returns

The line status is returned in the param member of get:

UART_LI NE_STATUS_OE
UART_LI NE_STATUS_PE
UART_LI NE_STATUS_FE
UART_LI NE_STATUS_BI

4.2.1.1.3.3 vart_init()

Syntax

unsigned char uart_init (
unsi gned char devNum
uart _context _t* context

)
Description

Initialise the UART driver and registers the driver with the Device Manager.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in
the devNumparameter.

cont ext
The second parameter, cont ext , is used to specify a buffer size for the receive and transmit
buffers. If the cont ext pointer is NULL then the default buffer size of 64 bytes is used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

Copyright © 2012 Future Technology Devices International Ltd. 257

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

The cont ext parameter must be of the form of the structure defined below:

typedef struct _uart_context_t ({
unsi gned char buffer_size;
} uart_context_t;

4.2.1.1.4 FIFO Driver
4.2.1.1.4.1 FIFO Return Codes

All calls to the FIFO driver will return one of the following status codes.

FI FO_OK
The command completed successfully.

FI FO_I NVALI D_PARAMETER
There was an error or problem with a parameter sent to the driver.

FI FO_DMA_NOT_ENABLED
A DMA operation was requested when DMA was not enabled.

FI FO_ERROR
An unspecified error occurred.

4.2.1.1.4.2 FIFO I0OCTL Calls
The following IOCTL request codes are supported by the FIFO driver.

VOS IOCTL FIFO GET STATUS Get the FIFO status
VOS IOCTL_FIFO_SET MODE Set the FIFO mode

Description
Get the FIFO status.

Parameters

There are no parameters to set.

Returns

This is returned as a bit map of the FIFO status in the param member of get:
FI FO_STATUS_READ NOT_FULL

Example

//wait for either FIFO status to be not full

do

{
fifo_iocbh.ioctl _code = VOS_ | OCTL_FI FO_GET_STATUS;
fifo_ioch.get.param= 0;
vos_dev_ioctl (hMonitor, & ifo_ioch);

if (uart_iocb.get.param!= (FI FO_STATUS_READ_NOT_FULL))
{

}
} while (1):

br eak;

Description

Set the FIFO mode to be synchronous or asynchronous.

Parameters

The mode is set in the param member of set:
FI FO_MODE_ASYNCHRONOUS

Copyright © 2012 Future Technology Devices International Ltd. 258

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

FI FO_MODE_SYNCHRONOUS

Returns
If the parameter is invalid then FIFO_INVALID_PARAMETER is returned.

Example

fifo_ioch.ioctl _code = VOS | OCTL_FI FO_SET_MODE;
fifo_iocbh.set.param = FI FO_MODE_SYNCHRONOUS;
vos_dev_ioctl (hMonitor, & ifo_ioch);

4.2.1.1.4.3 fifo_init()

Syntax

unsi gned char fifo_init (
unsi gned char devNum
fifo_context_t* context

)
Description

Initialise the FIFO driver and registers the driver with the Device Manager.

Parameters

devNum
The device number to use when registering the driver with the Device Manager is passed in
the devNumparameter.

cont ext
The second parameter, cont ext , is used to specify a buffer size for the receive and transmit
buffers. If the cont ext pointer is NULL then the default buffer size of 64 bytes is used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments
The cont ext parameter must be of the form of the structure defined below:

typedef struct _fifo_context_t ({
unsi gned char buffer_size;
} fifo_context_t;

4.2.1.1.5 SPI Slave Driver
4.2.1.1.5.1 SPI Slave Return Codes

All calls to the SPI Slave driver will return one of the following status codes.

SPI SLAVE_OK
The command completed successfully.

SPI SLAVE_| NVALI D_PARAMETER
There was an error or problem with a parameter sent to the driver.

SPI SLAVE_DMA_NOT_ENABLED
A DMA operation was requested when DMA was not enabled.

SPI SLAVE_ERROR
An unspecified error occurred.

4.2.1.1.5.2 SPI Slave IOCTL Calls

The following IOCTL request codes are supported by the SPI Slave driver.

Copyright © 2012 Future Technology Devices International Ltd. 259

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

VOS IO0CTL SPI SLAVE GET STATUS Get SPI Slave status
VOS_IOCTL_SPI_SLAVE_SCK CPHA Set the SCK phase

VOS IO0CTL SPI SLAVE SCK CPOL Set the SCK polarity
VOS_IOCTL_SPI_SLAVE_DATA_ORDER Set the data transmit order
VOS IOCTL SPI SLAVE SET ADDRESS Set the SPI slave address
VOS_I0CTL_SPI_SLAVE_SET_MODE Set the SPI mode

Description

Not used in the SPI Slave Driver. Always returns zero.

Parameters

There are no parameters to set.

Returns

This returns zero in the param member of get.

Example

Description

Set the clock phase of the SPI Slave. Data can be clocked in on either the rising edge or falling edge
of the clock.

Parameters

The phase is set in the param member of set:

SPI _SLAVE_SCK_CPHA 0
Data is latched from SDI on the SPI clk leading edge and loaded onto SDO on the SPI clk
trailing edge

SPI _SLAVE_SCK_CPHA_1
Data is latched from SDI on the SPI clk trailing edge and loaded onto SDO on the SPI clk
leading edge

Returns

If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

/1 set clock phase

spis_ioch.ioctl_code = VOS_| OCTL_SPI _SLAVE SCK_CPHA;
spi s_ioch. set. param = SPlI _SLAVE_SCK_CPHA 0;
vos_dev_i oct!| (hSpi Sl ave, &spi s_i ocb) ;

Description

Set the clock polarity of the SPI Slave. The clock input can be active high or low.

Parameters

The polarity is set in the param member of set:

SPI _SLAVE_SCK_CPOL_0
Active high clk, SCK low in idle.

SPI _SLAVE_SCK_CPOL_1
Active low clk, SCK high in idle.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 260

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

/'l set clock polarity

spis_ioch.ioctl _code = VOS_ | OCTL_SPI _SLAVE_SCK_CPOL;
spi s_i ocb. set. param = SPI _SLAVE_SCK_CPOL_0;
vos_dev_i octl (hSpi Sl ave, &spi s_i och);

Description

Set the data order of the SPI Slave. Data can be transmitted and received either MSB or LSB first.

Parameters

The data order is set in the param member of set:

SPI _SLAVE DATA ORDER MSB
MSB transmitted first.

SPI _SLAVE_DATA_ORDER_LSB
LSB transmitted first.
Returns
If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.
Example

/1 set data order
spis_iocbh.ioctl _code = VOS_ | OCTL_SPI _SLAVE_DATA_ORDER;
spi s_ioch. set. param = SPI _SLAVE_DATA_ORDER_MSB;
vos_dev_ioctl (hSpi Sl ave, &spi s_i och);

Description

Set the address of the SPI Slave. This can be in the range O to 7.

Parameters

The address is set in the param member of set.

Returns
If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.
Example

/'l set address of slave

spis_ioch.ioctl_code = VOS_| CCTL_SPI _SLAVE_SET_ADDRESS;
spis_ioch.set.param = 1;

vos_dev_i octl (hSpi Sl ave, &spi s_i ocb);

Description

Set the operation mode of the SPI slave.

Parameters

The 5 modes of operation available are set in the param member of the set structure.

SPI _SLAVE_MODE_FULL_DUPLEX
SPI _SLAVE_MODE_HALF_DUPLEX_4_PI N
SPI _SLAVE_MODE_HALF_DUPLEX_3_PI N
SPI _SLAVE_MODE_UNMANAGED

SPI _SLAVE_MODE_VI _COMPATI BLE

Please refer to the data sheet for information about each mode. For compatibility with standard SPI
implementations use the "unmanaged" mode. For compatibility with VNC1L applications use "V1
Compatible™ mode.

Copyright © 2012 Future Technology Devices International Ltd. 261

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Returns
If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

/'l set SPlI npde

spis_iocb.ioctl_code = VOS_| OCTL_SPI _SLAVE_SET_MODE;
spis_ioch. set. param = SPI _SLAVE_MODE_VI _COWPATI BLE;
vos_dev_i octl (hSpi Sl ave, &spi s_i ocb);

4.2.1.1.5.3 spislave_init()

Syntax

unsi gned char spislave_init (
unsi gned char devNum
spi sl ave_context _t* context

)
Description

Initialise the SPI Slave driver and registers the driver with the Device Manager. There are 2
independent SPI Slaves. A separate driver is required for each SPI Slave.

Parameters

devNum
The device number to use when registering the driver with the Device Manager is passed in
the devNumparameter.

cont ext
The second parameter, cont ext , is used to specify a buffer size for the receive and transmit
buffers. If the cont ext pointer is NULL then the default buffer size of 64 bytes is used on
SP1 Slave 0.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The cont ext parameter must be of the form of the structure defined below:

typedef struct _spislave_context_t {
unsi gned char sl avenunber;
unsi gned char buffer_size;

} spislave_context_t;

The slavenumber member can be either:

SPI _SLAVE_0
SPI _SLAVE_1

4.2.1.1.6 SPI1 Master Driver
4.2.1.1.6.1 SPI Master Return Codes

All calls to the SPI Master driver will return one of the following status codes.

SPI MASTER_OK
The command completed successfully.

SPI MASTER_I NVALI D_PARAMETER
There was an error or problem with a parameter sent to the driver.

SPI MASTER_DVMA_NOT_ENABLED
A DMA operation was requested when DMA was not enabled.

SPI MASTER_ERROR

Copyright © 2012 Future Technology Devices International Ltd. 262

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

An unspecified error occurred.

4.2.1.1.6.2 SPI Master IOCTL Calls

The following IOCTL request codes are supported by the SPI Master driver.

VOS IOCTL SPI MASTER GET STATUS Get SPI Master status

VOS_ IOCTL_SPI_MASTER_ SCK_CPHA Set the SCK phase

VOS I0CTL SPI MASTER SCK CPOL Set the SCK polarity

VOS IOCTL_SPI_MASTER DATA ORDER Set the data transmit order

VOS IOCTL SPI MASTER SS O Set the SPI master slave select O

VOS_I1OCTL_SPI_MASTER_SS_1 Set the SPI master slave select 1

VOS IOCTL SPI MASTER SET SCK FREQUENCY Set the SPI master clock frequency

VOS_IOCTL_SPI_MASTER_SET_DATA_DELAY Set the SPI master data delay between slave
select and data transmission in clock cycles

VOS IOCTL SPI MASTER AUTO TOGGLE SS Automatically toggle the slave select line

Description

Not used in the SPI Master Driver. Always returns zero.

Parameters

There are no parameters to set.

Returns

This returns zero in the param member of get.

Description

Set the clock phase of the SPI Master. Data can be clocked out on either the rising edge or falling
edge of the clock.

Parameters

The phase is set in the param member of set:

SPI _MASTER_SCK_CPHA 0
Data is latched from SDI on the SPI clk leading edge and loaded onto SDO on the SPI clk
trailing edge

SPI _MASTER SCK_CPHA 1
Data is latched from SDI on the SPI clk trailing edge and loaded onto SDO on the SPI clk
leading edge

Returns

If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.

Example

/'l set clock phase

spi m.ioch.ioctl _code = VOS_| OCTL_SPI _MASTER_SCK_CPHA;
spi m.ioch. set. param = SPI _MASTER_SCK_CPHA_0;
vos_dev_ioctl (hSpi Master, &pi m.i och);

Description

Copyright © 2012 Future Technology Devices International Ltd. 263

Document Reference No.: FT_000289

FTDI Vinculum Il User Guide
Ch. AN_151 User Manual Version 2.0.0
|p Clearance No.: FTDI# xxx

Set the clock polarity of the SPI Master. The clock can be active high or low.

Parameters

The polarity is set in the param member of set:

SPI _MASTER SCK_CPOL_0
Active high clk, SCK low in idle.

SPI _MASTER SCK_CPOL_1
Active low clk, SCK high in idle.

Returns

If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.

Example

/'l set clock polarity

spim.ioch.ioctl _code = VOS_ | OCTL_SPI _MASTER_SCK_CPQOL;
spi m.ioch. set. param = SPI _MASTER_SCK_CPOL_0;
vos_dev_i oct| (hSpi Master, &pi m_i ocb);

Description
Set the data order of the SPI Master. Data can be transmitted and received either MSB or LSB first.

Parameters

The data order is set in the param member of set:

SPI _MASTER DATA CORDER MBB
MSB transmitted first.

SPI _MASTER DATA_ORDER _LSB
LSB transmitted first.
Returns
If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.
Example

/1 set data order

spimioch.ioctl _code = VOS | OCTL_SPI _MASTER_DATA_ORDER,;
spi m.ioch. set. param = SPlI _MASTER_DATA_ORDER_MSB;
vos_dev_ioct| (hSpi Master, &pi m.i och);

Description

Set the slave select line zero or one either active (low) or disabled (high). These signals do not
toggle automatically when data is read or written from the interface.

Parameters

The slave select signal is set in the param member of set:

SPI _MASTER_SS_ENABLE
Enable slave select signal (active low).

SPI _MASTER_SS_DI SABLE
Disable the slave select signal.

Returns
If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.
Example

Copyright © 2012 Future Technology Devices International Ltd. 264

Document Reference No.: FT_000289

FTDI Vinculum Il User Gui